Slide 159
Slide 159 text
参考文献
• ラスタライゼーション
• Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W., Evans, A., ... & Fidler, S. (2022). Extracting triangular 3d models, materials, and lighting from images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 8280-8290).
• Petersen, F., Goldluecke, B., Borgelt, C., & Deussen, O. (2022). Gendr: A generalized differentiable renderer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.
4002-4011).
• Takimoto, Y., Sato, H., Takehara, H., Uragaki, K., Tawara, T., Liang, X., ... & Zheng, B. (2022, May). Dressi: A Hardware‐Agnostic Differentiable Renderer with Reactive Shader Packing and Soft Rasterization.
In Computer Graphics Forum (Vol. 41, No. 2, pp. 13-27).
• Cole, F., Genova, K., Sud, A., Vlasic, D., & Zhang, Z. (2021). Differentiable surface rendering via non-differentiable sampling. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.
6088-6097).
• Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., & Aila, T. (2020). Modular primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG), 39(6), 1-14.
• Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W. Y., Johnson, J., & Gkioxari, G. (2020). Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501.
• Zhu, W., Wu, H., Chen, Z., Vesdapunt, N., & Wang, B. (2020). Reda: reinforced differentiable attribute for 3d face reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 4958-4967).
• Liu, S., Li, T., Chen, W., & Li, H. (2019). Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 7708-7717).
• Kato, H., Ushiku, Y., & Harada, T. (2018). Neural 3d mesh renderer. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3907-3916).
• Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., & Freeman, W. T. (2018). Unsupervised training for 3d morphable model regression. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 8377-8386).
• Loper, M. M., & Black, M. J. (2014). OpenDR: An approximate differentiable renderer. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part VII 13 (pp. 154-169). Springer International Publishing.
• de La Gorce, M., Fleet, D. J., & Paragios, N. (2011). Model-based 3d hand pose estimation from monocular video. IEEE transactions on pattern analysis and machine intelligence, 33(9), 1793-1805.
• de La Gorce, M., Paragios, N., & Fleet, D. J. (2008, June). Model-based hand tracking with texture, shading and self-occlusions. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8).
IEEE.
• レイトレ:Edge sampling
• Li, T. M., Aittala, M., Durand, F., & Lehtinen, J. (2018). Differentiable monte carlo ray tracing through edge sampling. ACM Transactions on Graphics (TOG), 37(6), 1-11.
• レイトレ:Path-space
• Zhang, C., Miller, B., Yan, K., Gkioulekas, I., & Zhao, S. (2020). Path-space differentiable rendering. ACM transactions on graphics, 39(4).
• レイトレ:Area sampling
• Bangaru, S. P., Li, T. M., & Durand, F. (2020). Unbiased warped-area sampling for differentiable rendering. ACM Transactions on Graphics (TOG), 39(6), 1-18.
• Loubet, G., Holzschuch, N., & Jakob, W. (2019). Reparameterizing discontinuous integrands for differentiable rendering. ACM Transactions on Graphics (TOG), 38(6), 1-14.
159