Slide 1

Slide 1 text

Defects Tutorial I: Fundamentals Seán R. Kavanagh & Joe Willis 21/01/2021

Slide 2

Slide 2 text

Overview This time… § Motivation § Types of defect § Formation energies § Transition level diagrams § Understanding results § Experimental defects Next time… § Calculations § INCAR settings § Dos and don’ts

Slide 3

Slide 3 text

Motivation § Defects control device behaviour

Slide 4

Slide 4 text

Point Defect Classification Intrinsic: Defect arising from imperfect arrangement of the bulk atoms. Always present; concentrations can be controlled just with temperature. Extrinsic: Defect arising from an external impurity. (e.g. doping, intentional or otherwise). Vacancy: Missing atom at lattice site. Interstitial: Atom located at interstitial site (i.e. void in the crystal structure). Substitution: Atom located at the lattice site of a different element. (Often “Antisite” if intrinsic). Complex: Two or more point defects located nearby, with elastic/electronic/magnetic/etc interactions.

Slide 5

Slide 5 text

Kröger–Vink Point Defect Notation X is the species: - Element (Si, Cd…) - Vacancy “V” or “v” S is the lattice site: - Elemental Symbol of original site - “i” for an interstitial site q is the electronic charge of the species relative to the site that it occupies - q = Current Charge – Original Charge Kröger- Vink (Chemistry) Materials Science × 0 ′′ -2 •• +2 Charge Notation:

Slide 6

Slide 6 text

Kröger–Vink Point Defect Notation

Slide 7

Slide 7 text

Defect Formation Energy § Overview Goyal, A. et al, Comp. Mat. Sci., 2017, 130, 1-9

Slide 8

Slide 8 text

Supercells § D = defect § q = charge state § H = host

Slide 9

Slide 9 text

Chemical Potential § Accounting for the change in Gibbs free energy when adding or removing an atom § ni = number of atoms added to (negative) or removed from (positive) the host § µi = chemical potential § i = atomic species … but what is it?

Slide 10

Slide 10 text

Chemical Potential: Definition § Rate of change of free energy of a system with respect to the change in number of atoms in the system, i.e.

Slide 11

Slide 11 text

Chemical Potential: Limits § Thermodynamic stability of host material, e.g. ZnO

Slide 12

Slide 12 text

Chemical Potential: Limits Zn-rich: Zn-poor:

Slide 13

Slide 13 text

Chemical Potential: Limits § For multiple stable competing phases, solve simultaneous equations:

Slide 14

Slide 14 text

Chemical Potential: Limits https://github.com/SMTG-UCL/wiki/wiki/Defects:-Chemical-Potential-Limits § For TiO2 :

Slide 15

Slide 15 text

Chemical Potential: Dopant Limits § For a VTi defect: § The same process can be applied for dopant competing phases, but within chemical potential limits of the host material

Slide 16

Slide 16 text

Chemical Potential: Dopant Limits Species Ti rich Ti poor Nb2 O5 -0.44 -9.24 NbO2 -0.42 -7.46 NbO -0.58 -4.10 µO = -3.52 µO = 0 µ Ti rich Ti poor Ti -2.10 -9.14 O -3.52 0.00 Nb -0.58 -9.24

Slide 17

Slide 17 text

Chemical Potential: Doping Limits § For a substitution, you now must account for the energy needed to remove a host atom and to add a dopant atom § e.g. for a NbTi defect:

Slide 18

Slide 18 text

Defect Formation Energy Goyal A, Gorai P, Peng H, Lany S and Stevanović V 2017 A computational framework for automation of point defect calculations Comput. Mater. Sci. 130 1–9 Fermi level = the thermodynamic work required to add one electron to the system

Slide 19

Slide 19 text

Defect Formation Energy Goyal A, Gorai P, Peng H, Lany S and Stevanović V 2017 A computational framework for automation of point defect calculations Comput. Mater. Sci. 130 1–9 Defect-Defect Interactions:

Slide 20

Slide 20 text

Defect Formation Energy § Overview Goyal, A. et al, Comp. Mat. Sci., 2017, 130, 1-9

Slide 21

Slide 21 text

Transition Level Diagram

Slide 22

Slide 22 text

Fermi Level EF / eV Formation energy / eV 𝑦 = 𝑚𝑥 + 𝑐 Fermi Level EF / eV Formation energy / eV +1 0 -1

Slide 23

Slide 23 text

Transition Level Diagram Fermi Level EF / eV Formation energy / eV +1 0 -1

Slide 24

Slide 24 text

Deep Defect Fermi Level EF / eV Formation energy / eV +1 0 0 3 CBM

Slide 25

Slide 25 text

Deep Defect Huang, Y.-T. et al, Nano., 2021, 32, 132004

Slide 26

Slide 26 text

Shallow Defect Fermi Level EF / eV Formation energy / eV +1 0 0 3 CBM

Slide 27

Slide 27 text

Resonant Defect Fermi Level EF / eV Formation energy / eV +1 0 0 3 CBM

Slide 28

Slide 28 text

Comparing Chemical Potential Limits

Slide 29

Slide 29 text

Thermodynamic Driving Forces of Disorder Thermodynamic equilibrium: ΔF is minimised Gibbs Free Energy ΔF = ΔH – TΔS Configurational entropy S = kB lnW kB. = Boltzmann constant W = Multiplicity (of defect formation) Energy Free Energy Minimum (Thermodynamic Equilibrium) nd Nexp −∆H kB T Image Credits: Prof. Graeme Watson

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

Defect Formation Energy Diagrams Fermi Level Pinning Charge Neutrality: p + ND + = n + NA – EF

Slide 32

Slide 32 text

Defect Formation Energy Diagrams Fermi Level Pinning Charge Neutrality: p + ND + = n + NA – EF

Slide 33

Slide 33 text

Defect Formation Energy Diagrams Fermi Level Pinning Charge Neutrality: p + ND + = n + NA – EF

Slide 34

Slide 34 text

Defect Formation Energy Diagrams Fermi Level Pinning Charge Neutrality: p + ND + = n + NA – EF

Slide 35

Slide 35 text

Defect Properties: Optical Transition Levels Td C3v Configuration Coordinate (Q) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Relative Energy (eV) 0.47 eV 0.22 eV 0.36 eV 0.58 eV 2.61 Å 2.59 Å 3.05 Å

Slide 36

Slide 36 text

Optical Transition Levels

Slide 37

Slide 37 text

Defect Formation Energy Diagrams Deep, shallow or resonant?

Slide 38

Slide 38 text

Defect Formation Energy Diagrams Deep Levels -> Efficiency Reduction in Solar Cells

Slide 39

Slide 39 text

Experiment - HAXPES HAXPES Credit: T. J. Featherstone

Slide 40

Slide 40 text

Experiment - DLTS Lang, D. V., Jour. Appl. Phys., 1974, 45, 3023-32

Slide 41

Slide 41 text

Experiment – DLTS Scanlon, D. O. et al, PRL, 2009, 103, 096405

Slide 42

Slide 42 text

Next Time § More complicated chemical potential spaces § How to set up calculations § Finite size corrections in practice § Polarons § Optical transitions

Slide 43

Slide 43 text

Further Reading § Lany, S. and Zunger, A., Phys. Rev. B, 2008, 78, 235104 § Freysoldt, C. et al, Rev. Mod. Phys., 2014, 86, 253 § Williamson, B. A. D. et al, Chem. Mater., 2020, 32, 1964-73 § Swallow, J. E. N. et al, Mater. Horiz., 2020, 7, 236-43 § Wickramaratne, D. et al, Appl. Phys. Lett., 2018, 113, 192106

Slide 44

Slide 44 text

Chemical Potential: Ternary + § The problem clearly gets larger with more competing phases and more complex materials. § Use CPLAP! § Input: https://github.com/jbuckeridge/cplap

Slide 45

Slide 45 text

Chemical Potential: Ternary + § Output:

Slide 46

Slide 46 text

Chemical Potential: Ternary + Ternary: § 2D x-y plot with colour chart as 3rd dimension § 3D x-y-z plot For quaternary: § 3D x-y-z- plot with colour chart as 4th dimension § 2D x-y plots with colour chart as 3rd dimension, keep one chemical potential constant § 2D x-y plots keep two chemical potentials constant

Slide 47

Slide 47 text

Chemical Potentials: Quaternary Example § Overview Xiao, Z. et al, Adv. Func. Mater., 2020, 1909906

Slide 48

Slide 48 text

Defects Tutorial II: Implementation Seán R. Kavanagh & Joe Willis 04/02/2020

Slide 49

Slide 49 text

Overview § Primitive – supercell relationship § Constructing defective supercells § INCAR tags § Calculating defects efficiently § Finite correction schemes in practice § Polarons § CPLAP for complex systems § Summary

Slide 50

Slide 50 text

From primitive to supercell 3 x 3 x 2 $ super –f POSCAR 3 3 2 Initial structure has 4 atoms Final structure has 72 atoms import pymatgen.core.structure make_supercell(scaling_matrix)

Slide 51

Slide 51 text

From primitive to supercell $ kgrid-series POSCAR_prim Length cutoff KSPACING Samples ------------- -------- ------------ 10.419 0.3015 8 8 4 $ kgrid-series POSCAR_super_3_3_2 Length cutoff KSPACING Samples ------------- -------- ------------ 10.419 0.3015 3 3 2 IMPORTANT Remember the relationship between real and reciprocal space Change your k-point grid accordingly

Slide 52

Slide 52 text

Creating Point Defects • Manual • Python 🐍

Slide 53

Slide 53 text

Creating Point Defects: Manual

Slide 54

Slide 54 text

Creating Point Defects: Manual POSCAR: Beware POSCAR elemental ordering!

Slide 55

Slide 55 text

Creating Point Defects: Python

Slide 56

Slide 56 text

Creating Point Defects: Python github.com/kavanase/doped

Slide 57

Slide 57 text

INCAR tags Bread and butter tags: ISIF = 2 ISYM = 0 IBRION = 1 POTIM = 0.2 ISPIN = 2 Play around with as usual if relaxation is getting stuck

Slide 58

Slide 58 text

INCAR tags Trade-off between accuracy and supercell size/number of electrons in system: LREAL = False or LREAL = Auto ROPT = 1E-03 ! For each species in POSCAR Fast! More accurate, may be required for non- convergent relaxations

Slide 59

Slide 59 text

INCAR tags If using AIDE: ICORELEVEL = 0 or 1 LVHAR = .TRUE. 0 prints average electrostatic potential at core 1 prints core state eigenenergies AIDE will calculate potential alignment using either. Be consistent across your project!

Slide 60

Slide 60 text

INCAR tags If using DOPED: LVHAR = .TRUE. or ICORELEVEL = 0 Freysoldt Kumagai More on this from Seán to come…

Slide 61

Slide 61 text

INCAR tags Setting charge states: 1. DOPED – reads POSCAR and POTCAR and assigns charge states based on pymatgen.core module. Can then manually pick/delete charge states provided. 2. Manually for AIDE – use your chemical intuition to consider each defect site and change NELECT and NUPDOWN accordingly.

Slide 62

Slide 62 text

Chemical intuition…

Slide 63

Slide 63 text

INCAR tags VO in In2 O3 : … or just use DOPED! VO x VO • VO •• NUPDOWN sets the difference between the number of electrons in the spin up and spin down channels. NELECT sets total number of electrons. NELECT = 378 NUPDOWN = 0 NELECT = 377 NUPDOWN = 1 NELECT = 376 NUPDOWN = 0

Slide 64

Slide 64 text

Calculation Optimisation: Converge Test! davidbowler.github.io/AtomisticSimulations/blog/dft-scaling DFT Computation Time ∝ N3 Hybrid DFT ∝ N3 – N4 github.com/kavanase/vaspup2.0

Slide 65

Slide 65 text

Calculation Optimisation: Test your System ‘Spot the difference’

Slide 66

Slide 66 text

Calculation Optimisation: Test your System • AlGO • Supercell Size and k- grid combinations • KPAR

Slide 67

Slide 67 text

Calculation Optimisation: Relaxation Pre-Convergence 𝚪-point only vasp_g am • For each inequivale nt defect site and likely magnetic configurat ion. NKRED = 2 vasp_s td • Only the lowest energy vasp_gam - predicted configurat ion, vasp_ std • Continua tion from NKRED run (often only 1 or 2 steps). vasp_ ncl • Spin-orbit single- shot energy calculatio n (possibly with (Can’t use WAVECAR from vasp_gam) (Can’t use WAVECAR from vasp_std)

Slide 68

Slide 68 text

Calculation Optimisation: Relaxation Pre-Convergence 𝚪-point only vasp_gam •For each inequivalent defect site and likely magnetic configuration. NKRED = 2 vasp_std •Only the lowest energy vasp_gam- predicted configuration, unless tiny 𝛥E. vasp_std •Continuation from NKRED run (often only 1 or 2 steps). vasp_ncl •Spin-orbit single-shot energy calculation (possibly with ISMEAR=-5) (Can’t use WAVECAR from vasp_gam) (Can’t use WAVECAR from vasp_std)

Slide 69

Slide 69 text

Post-Processing: Finite-Size Corrections AIDE (Lany-Zunger Correction Scheme) defects.dat: chem_pots.dat -> Chemical Potentials limits.dat -> Chemical Potential Limits diel.dat -> Dielectric Tensor

Slide 70

Slide 70 text

Post-Processing: Finite-Size Corrections doped (FNV, Kumagai & Oba or Lany-Zunger Correction Scheme)

Slide 71

Slide 71 text

Calculation Optimisation: Chemical Potentials: Smearing 5 10 15 20 25 30 k-point Mesh (i x i x i) −60 −50 −40 −30 −20 −10 0 10 Ground-State Energy wrt Converged Value [meV] Energy Convergence wrt k-point Mesh ISMEAR = -5 ISMEAR = 2 ISMEAR = 0 Good k-point convergence particularly important for calculations of metallic phases. (Metallic Bismuth)

Slide 72

Slide 72 text

Calculation Optimisation: Chemical Potentials: Provided the k-point mesh is well-converged, NKRED{X,Y,Z} = 2 does not significantly affect the accuracy of the energy (𝛥E < 1 meV/atom), and reduces calculation cost by approx. an order of magnitude. Use of tetrahedron smearing (ISMEAR = -5) permits a reduced k-point mesh – but note is not suitable for metal relaxations.

Slide 73

Slide 73 text

Polarons

Slide 74

Slide 74 text

Polarons When a charge carrier interacts with ions in a system resulting in a bound state. This will lower the overall energy of a system. Need to account for this in highly ionic/polar systems, i.e. oxides. https://github.com/SMTG-UCL/wiki/wiki/Defect-Calculation-Workflow#accounting-for-polarons

Slide 75

Slide 75 text

Polarons VIn in In2 O3 : VIn x VIn ’ VIn ’’ VIn ’’’

Slide 76

Slide 76 text

Polarons VIn x 3 holes NELECT = 381 MAGMOM sets the initial magnetic moment for each atom NUPDOWN = 1 MAGMOM = 31*0 45*0 2*1 1*-1 NUPDOWN = 3 MAGMOM = 31*0 45*0 3*1 POSCAR In O 31 48

Slide 77

Slide 77 text

Polarons VIn ’ 2 holes NUPDOWN = 2 MAGMOM = 31*0 46*0 2*1 POSCAR In O 31 48 NELECT = 382 NUPDOWN = 0 MAGMOM = 31*0 46*0 1*1 1*-1

Slide 78

Slide 78 text

Polarons VIn ’’ 1 hole NUPDOWN = 1 MAGMOM = 31*0 47*0 1*1 POSCAR In O 31 48 NELECT = 383

Slide 79

Slide 79 text

Polarons VIn ’’’ 0 holes NUPDOWN = 0 MAGMOM = 31*0 48*0 POSCAR In O 31 48 NELECT = 384

Slide 80

Slide 80 text

Polarons VIn x VIn ’ VIn ’’ VIn ’’’

Slide 81

Slide 81 text

Polawrong VIn ’’ VIn ’’ Higher energy structure

Slide 82

Slide 82 text

Polarons Consider the ionicity of your material. Less likely in materials with disperse VBMs. Test all combinations with vasp_gam. Visualise hole charge density using PARCHG file. (Apply reverse logic if expecting localized electrons) https://github.com/SMTG-UCL/wiki/wiki/VASP-Partial-Charges

Slide 83

Slide 83 text

CPLAP Chemical Potential Limits Analysis Program. Calculates values of µ for all elements in complex chemical potential spaces. Example run through with ternary material BaSnO3 .

Slide 84

Slide 84 text

CPLAP 1. Calculate elemental reference energies. 2. Calculate formation energies of all stable competing phases (NOTE energy per formula unit) 3. Run CPLAP.

Slide 85

Slide 85 text

CPLAP Sample input file: 3 !Number of species in host compound. 1 Ba 1 Sn 3 O -11.464243 !Stoichiometry + formation energy. none !Dependent variable. 3 !Number of competing phases. 2 !Number of species in comp. phase. 1 Ba 1 O -5.1386635 !Stoichiometry + formation energy. 2 !Number of species in comp. phase. 1 Sn 1 O -2.539629 !Stoichiometry + formation energy. 2 !Number of species in comp. phase. 1 Sn 2 O -5.2876295 !Stoichiometry + formation energy.

Slide 86

Slide 86 text

CPLAP Sample output file Intersection points in chemical potential space: mu_Ba mu_Sn | mu_O = ----------------------|----------- -1.9759 0.0000 | -3.1628 -5.1387 -6.3256 | 0.0000 -3.5328 0.0000 | -2.6438 -6.1766 -5.2876 | 0.0000 -2.4948 0.0000 | -2.9898 -5.1387 -5.2876 | -0.3460 O-poor O-rich O-rich

Slide 87

Slide 87 text

CPLAP Plotting: • 3D xyz plot • 2D xy plot with colour bar (set a dependent variable) • 3D xyz plot with colour bar (set a dependent variable) • 3D xyz plot with one fixed variable • 2D xy plots with multiple fixed variables

Slide 88

Slide 88 text

CPLAP Two elements Three elements

Slide 89

Slide 89 text

CPLAP § Overview Xiao, Z. et al, Adv. Func. Mater., 2020, 1909906

Slide 90

Slide 90 text

The Main Event: Defect Thermodynamics

Slide 91

Slide 91 text

Defect Analysis • Structure Visualisation (VESTA, CrystalMaker…) • Electronic Density of States (via sumo-dosplot and/or EIGENVAL & PROCAR files) • Transition Level Position (Deep, Shallow, Resonant?) • Charge/Magnetization Density Isosurfaces (from CHGCAR or PARCHG files) • Structural and Bond Length Analysis (via VESTA, doped, pymatgen…) • COHP (Bonding Analysis), via LOBSTER − 1 0 1 2 Energy(eV) Density of States Total DOS Bi (s) Bi (p) Br (p) Sn (s)

Slide 92

Slide 92 text

Conclusions