Slide 1

Slide 1 text

Denis A. Engemann, PhD 7/15/20 MNI Challenges of building clinical biomarkers from M/EEG Multimodal modeling with missing data and robust regression on power spectra [email protected] www.denis-engemann.de github: @dengemann twitter: @dngman

Slide 2

Slide 2 text

Woo et al. 2017 Nat Neuro Rev. Predicting clinical endpoints from multiple brain signals Mass-Univariate statistics Combine multiple inputs into single prediction Too many models … AI! Yeah!

Slide 3

Slide 3 text

Woo et al. 2017 Nat Neuro Rev. Predicting clinical endpoints from multiple brain signals Mass-Univariate statistics Combine multiple inputs into single prediction AI !! Too many models …

Slide 4

Slide 4 text

Predicting clinical endpoints from multiple brain signals

Slide 5

Slide 5 text

Predicting clinical endpoints from multiple brain signals NO T SO FAST !!

Slide 6

Slide 6 text

Caveat: generative mechanisms mostly unknown Jonas & Kording 2017, PLOS Comp. Biol.

Slide 7

Slide 7 text

Bzdok, Engemann et al. 2018 bioRxiv [https://github.com/banilo/inf_vs_pred_2018/] Caveat: inference is not prediction Significance does not imply that prediction will work!

Slide 8

Slide 8 text

Caveat: Prediction accuracy depends on sample size. Often in a bad way … Varoquaux 2017, Neuroimage

Slide 9

Slide 9 text

Interim-Summary: Are we doomed? Generative mechanism? Inference? Measuring performance?

Slide 10

Slide 10 text

Generative mechanism? Inference? Measuring performance? In high-dimensional small-data regimes: Have good priors! Interim-Summary: Are we doomed?

Slide 11

Slide 11 text

Challenge: Predicting a precious clinical outcome •Problem: few / expensive data on outcome e.g. cognitive decline •Brain Age Delta = predicted age (PAD) - passport age
 •Precocious aging induces cognitive dysfunction (CD) and risk of mortality
 •Typically estimated with MRI!

Slide 12

Slide 12 text

•Problem: few / expensive data on outcome e.g. cognitive decline •Idea: Predict widely available outcome; exploit correlation with the outcome of interest, e.g. age •Brain Age Delta = predicted age (PAD) - passport age
 •Precocious aging induces cognitive dysfunction (CD) and risk of mortality
 •Typically estimated with MRI! Challenge: Predicting a precious clinical outcome

Slide 13

Slide 13 text

Solution: Surrogate Biomarker e.g. Brain Age Cole et al. Mol. Psych. 2018 •Problem: few / expensive data on outcome e.g. cognitive decline •Idea: Predict widely available outcome; exploit correlation with the outcome of interest, e.g. age •Brain Age Delta = predicted age (PAD) - passport age
 •Precocious aging induces cognitive dysfunction (CD) and risk of mortality
 •Typically estimated with MRI!

Slide 14

Slide 14 text

•Problem: few / expensive data on outcome e.g. cognitive decline •Idea: Predict widely available outcome; exploit correlation with the outcome of interest, e.g. age •Brain Age Delta = predicted age (PAD) - passport age
 •High PAD is not good … •Typically estimated with MRI! Cole et al. Mol. Psych. 2018 Liem et al 2017 NIMG Liem et al 2017 NIMG Solution: Surrogate Biomarker e.g. Brain Age

Slide 15

Slide 15 text

Shall we bother about M/EEG? Brookes et al. 2011, PNAS fMRI resting state networks can be reconstructed from MEG Historically strong emphasis on similarities between M/EEG and fMRI

Slide 16

Slide 16 text

Shall we bother about M/EEG? Hipp & Siegel 2015, Curr. Biol. BOLD and MEG show spatial correlations across many frequency bands. Historically strong emphasis on similarities between M/EEG and fMRI

Slide 17

Slide 17 text

But perhaps … Kumral et al. 2020 NIMG BOLD and EEG signal variability at rest differently relate to aging.

Slide 18

Slide 18 text

But perhaps we should … Nentwich et al. 2020 NIMG fMRI and EEG connectivity is different.

Slide 19

Slide 19 text

Using the MEG system at Neurospin … How do we get M/EEG signals?

Slide 20

Slide 20 text

… or using Python How do we get M/EEG signals?

Slide 21

Slide 21 text

… M/EEG signals!

Slide 22

Slide 22 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] What MEG features shall we use?

Slide 23

Slide 23 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] α-power Engemann 2018 Brain What MEG features shall we use?

Slide 24

Slide 24 text

Engemann, Raimondo, …, Dehaene & Sitt, Brain, 2018 Alpha band power enables EEG-based cross-site classification in disorders of consciousness.

Slide 25

Slide 25 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] α-peak α-power Babiloni 2006 HBM Engemann 2018 Brain Age prediction: Which M/EEG features?

Slide 26

Slide 26 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] α-peak Power topography Gaubert 2019 Brain Fruehwirt 2017 NeurIPS workshop α-power Babiloni 2006 HBM Engemann 2018 Brain Age prediction: Which M/EEG features?

Slide 27

Slide 27 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] 1/f fits Voytek et al. 2015 JoN α-peak Power topography Gaubert 2019 Brain Fruehwirt 2017 NeurIPS workshop α-power Babiloni 2006 HBM Engemann 2018 Brain Age prediction: Which M/EEG features?

Slide 28

Slide 28 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] 1/f fits Voytek et al. 2015 JoN α-peak Power topography Gaubert 2019 Brain Fruehwirt 2017 NeurIPS workshop α-power Babiloni 2006 HBM Engemann 2018 Brain Other classical features • Evoked latency (Price 2017 Nat Coms) • 1/f topography Age prediction: Which M/EEG features?

Slide 29

Slide 29 text

1e−28 1e−27 1e−26 1 3 10 30 Frequecy (Hz) log10(MEG2) age group (17.9,28] (28,38] (38,48] (48,58] (58,68] (68,78] (78,88.1] 1/f fits Voytek et al. 2015 JoN α-peak Power topography Gaubert 2019 Brain Fruehwirt 2017 NeurIPS workshop α-power Babiloni 2006 HBM Engemann 2018 Brain Other classical features • Evoked latency (Price 2017 Nat Coms) • 1/f topography Age prediction: Which M/EEG features? Possible enhancement: Analyze power in source space!

Slide 30

Slide 30 text

Objective: predict target fro x Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) How to build MEG-based regression models?

Slide 31

Slide 31 text

Objective: predict target fro x Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) Use AI ? How to build MEG-based regression models?

Slide 32

Slide 32 text

Objective: predict target fro x Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) Use AI ? NOPE How to build MEG-based regression models?

Slide 33

Slide 33 text

z ? Objective: predict target from M/EEG Neurophysiological genera or Maxwell's eq. neural mechanism Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) Primary currents How to build MEG-based regression models?

Slide 34

Slide 34 text

How to build MEG-based regression models? z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el statistical sources Maxwell's eq. neural mechanism Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG)

Slide 35

Slide 35 text

z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el statistical sources M/EEG signals Maxwell's eq. neural mechanism Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) How to build MEG-based regression models?

Slide 36

Slide 36 text

How to build an MEG-base regression model? z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el biomedical outcome statistical sources M/EEG signals Maxwell's eq. neural mechanism Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG)

Slide 37

Slide 37 text

z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el biomedical outcome statistical sources M/EEG signals Maxwell's eq. neural mechanism f log s Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) How to build MEG-based regression models?

Slide 38

Slide 38 text

And is it worth the effort? Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B 2 1 2 21 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 true age 2 21 true age 2 1 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 Engemann et al. 2020 eLife Stacking method: Wolpert 1992, Liem et al. 2017, NIMG; Karrer et al. 2019, HBM, … How shall we combine MEG with MRI?

Slide 39

Slide 39 text

Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B 2 1 2 21 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 true age 2 21 true age 2 1 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 Engemann et al. 2020 eLife Stacking method: Wolpert 1992, Liem et al. 2017, NIMG; Karrer et al. 2019, HBM, … And is it worth the effort? How shall we combine MEG with MRI?

Slide 40

Slide 40 text

Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B 2 1 2 21 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 true age 2 21 true age 2 1 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 Engemann et al. 2020 eLife Stacking method: Wolpert 1992, Liem et al. 2017, NIMG; Karrer et al. 2019, HBM, … And is it worth the effort? How shall we combine MEG with MRI?

Slide 41

Slide 41 text

Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B 2 1 2 21 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 true age 2 21 true age 2 1 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 Engemann et al. 2020 eLife Stacking method: Wolpert 1992, Liem et al. 2017, NIMG; Karrer et al. 2019, HBM, … And is it worth the effort? How shall we combine MEG with MRI?

Slide 42

Slide 42 text

Is it worth the effort? Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B Multimodal input data anatomical MRI functional MRI MEG Layer I: Ridge Regression Age predictions Missing value coding Layer II: Random Forest Regressor tree = 1 tree = 1 subject #i age = 50 age #i = 53 age = 57 age = 5 tree = ... tree = B 2 1 2 21 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 true age 2 21 true age 2 1 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 Engemann et al. 2020 eLife Stacking method: Wolpert 1992, Liem et al. 2017, NIMG; Karrer et al. 2019, HBM, … How shall we combine MEG with MRI?

Slide 43

Slide 43 text

Overview on all features Engemann et al. 2020 eLife Liem et al 2017 NIMG NEW!

Slide 44

Slide 44 text

Predicting brain age from MRI & MEG enhances predictive performance & cognitive phenotyping Engemann et al. (2020) eLife - Cam-CAN dataset 4.7 5.1 5.2 6.0 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 MAE difference (years) Multimodal stacking m ro ement o er anatomical M M fM ME M fM M ME M no M anat. M anat. added 0 10 20 30 0 10 20 30 0 10 20 30 MAEfM (years) MAEME (years) age 20 40 60 0 A B

Slide 45

Slide 45 text

Engemann et al. (2020) eLife - Cam-CAN dataset 4.7 5.1 5.2 6.0 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 MAE difference (years) Multimodal stacking m ro ement o er anatomical M M fM ME M fM M ME M no M anat. M anat. added 0 10 20 30 0 10 20 30 0 10 20 30 MAEfM (years) MAEME (years) age 20 40 60 0 A B Predicting brain age from MRI & MEG enhances predictive performance & cognitive phenotyping

Slide 46

Slide 46 text

What aspects of MEG are most influential? Peaks - Latencies - 1/f - Power - Connectivity Engemann et al. 2020 eLife α βlow βlow βlow Ecat Pcat 10 15 0.01 0.10 1.00 Variable importance (MAE) MAE (years) family source activity source connectivity sensor mixed input/feature si nal envelope 1 f slope α pea E lat B predictin y ensor Mixed 1 15 1

Slide 47

Slide 47 text

What if some modalities are (sometimes) missing? opportunistic missing value handling Engemann et al. 2020 eLife on Age predictions Missing value coding Layer II: Random Forest Regressor on Age predictions Missing value coding Layer II: Random Forest Regressor 2 1 2 21 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 true age 2 21 true age 2 1 A A A A 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 2 1 1e 1e 1e 1e 1 2 2 2 21 1 1 4.4 4.6 4.6 4.7 8.6 14.6 MRI fMRI fMRI MEGsens MRI fMRI MEG MRI fMRI MEGsens MEG MEGsens 0 10 20 30 MAE Available inputs A B

Slide 48

Slide 48 text

Interim-Summary 1. MEG contains unique information on cognitive aging 2. MEG source power is a good feature 3. Tree-based methods bring flexible handling of NA’s

Slide 49

Slide 49 text

Interim-Summary 1. MEG contains unique information on cognitive aging 2. MEG source power is a good feature 3. Tree-based methods bring flexible handling of NA’s Limitations: What we find in most hospitals looks a bit different … do I need MEG + MRI for source localization ?

Slide 50

Slide 50 text

WHAT IF I TOLD YOU … … that we don’t need MRI

Slide 51

Slide 51 text

… hack the Covariance Matrix !

Slide 52

Slide 52 text

M/EEG Covariance Matrix Ci = Xi X⊤/T ∈ ℝP×P

Slide 53

Slide 53 text

M/EEG Covariance Matrix: Ci = Xi X⊤ i /T ∈ ℝP×P

Slide 54

Slide 54 text

M/EEG Covariance Matrix: var(Xi ) = diag(Ci ) ∈ ℝP Power is variance Ci = Xi X⊤ i /T ∈ ℝP×P

Slide 55

Slide 55 text

M/EEG Covariance Matrix: Power is variance var(Xi ) = diag(Ci ) ∈ ℝP Ci = Xi X⊤ i /T ∈ ℝP×P “diag” — our baseline representation!

Slide 56

Slide 56 text

Predicting from M/EEG source power Without biophysical source localization z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el biomedical outcome statistical sources M/EEG signals Maxwell's eq. neural mechanism f log s Problem: field spread is evil. Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) Ci = Xi X⊤ i /T ∈ ℝP×P Use cov. as representation

Slide 57

Slide 57 text

Predicting from M/EEG source power Without biophysical source localization z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el biomedical outcome statistical sources M/EEG signals Maxwell's eq. neural mechanism f log s Problem: field spread is evil. Idea: get immunized against this evil Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) Take out volume conduction using Riemannian embeddings, or spatial filters Ci = Xi X⊤ i /T ∈ ℝP×P Use cov. as representation logm ( ¯ C−1/2Ci ¯ C−1/2)

Slide 58

Slide 58 text

Simulations Are shortcuts — in principle — possible? Sabbagh et al. 2019 (NeurIPS) 2020 (NIMG) distance from identity chance level 0.00 0.25 0.50 0.75 1.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 µ Normalized MAE noise on target 0.00 0.25 0.50 0.75 1.00 0.01 0.10 1.00 10.00 σ 0.00 0.25 0.50 0.75 1.00 upper diag S o iemann noise on mi ing matri 0.01 0.10 1.00 σ z s ? Objective: predict target from M/EEG Neurophysiological genera or a is ical o el biomedical outcome statistical sources M/EEG signals Maxwell's eq. neural mechanism f log s

Slide 59

Slide 59 text

Empirical benchmarks How do these models compare with real data and unknown degrees model violations? Sabbagh et al. 2020 (NIMG) 7.98 8.11 8.76 8.76 9.17 10.89 predicting age Riemann53 Riemann SPoC67 SPoC diag upper 8 10 12 14 16 MAE upper diag SPoC Riemann MEG — sensor space MEG — source space

Slide 60

Slide 60 text

Empirical benchmarks How do these models compare with real data and unknown degrees model violations? Sabbagh et al. 2020 (NIMG) 7.98 8.11 8.76 8.76 9.17 10.89 predicting age Riemann53 Riemann SPoC67 SPoC diag upper 8 10 12 14 16 MAE upper diag SPoC Riemann MEG — sensor space MEG — source space Q: Do we expect the same ranking?

Slide 61

Slide 61 text

Empirical benchmarks How do these models compare with real data and unknown degrees model violations? Sabbagh et al. 2020 (NIMG) 7.69 9.50 10.98 11.67 11.86 12.46 predicting age diag Riemann11 Riemann upper SPoC20 SPoC 5.0 7.5 10.0 12.5 15.0 17.5 MAE upper diag SPoC Riemann 7.98 8.11 8.76 8.76 9.17 10.89 predicting age Riemann53 Riemann SPoC67 SPoC diag upper 8 10 12 14 16 MAE upper diag SPoC Riemann MEG — sensor space MEG — source space Observations: (1) the baseline model is the best in source space

Slide 62

Slide 62 text

Empirical benchmarks How do these models compare with real data and unknown degrees model violations? Sabbagh et al. 2020 (NIMG) 7.69 9.50 10.98 11.67 11.86 12.46 predicting age diag Riemann11 Riemann upper SPoC20 SPoC 5.0 7.5 10.0 12.5 15.0 17.5 MAE upper diag SPoC Riemann 7.98 8.11 8.76 8.76 9.17 10.89 predicting age Riemann53 Riemann SPoC67 SPoC diag upper 8 10 12 14 16 MAE upper diag SPoC Riemann MEG — sensor space MEG — source space Observations: (1) the baseline model is the best in source space (2) Riemannian embeddings get closest to results with source localization

Slide 63

Slide 63 text

Empirical benchmarks How do these models compare with real data and unknown degrees model violations? Sabbagh et al. 2020 (NIMG) 7.98 8.11 8.76 8.76 9.17 10.89 predicting age Riemann53 Riemann SPoC67 SPoC diag upper 8 10 12 14 16 MAE upper diag SPoC Riemann MEG — sensor space EEG— sensor space (TUH data, n=1385) Q: Can we get similar results on 21-chan. EEG as compared to 306-chan. MEG?

Slide 64

Slide 64 text

Empirical benchmarks How do these models compare with real data and unknown degrees model violations? Sabbagh et al. 2020 (NIMG) 8.21 8.27 9.63 10.72 predicting age Riemann19 Riemann SPoC21 diag upper 5.0 7.5 10.0 12.5 15.0 MAE upper diag SPoC Riemann 7.98 8.11 8.76 8.76 9.17 10.89 predicting age Riemann53 Riemann SPoC67 SPoC diag upper 8 10 12 14 16 MAE upper diag SPoC Riemann MEG — sensor space EEG— sensor space (TUH data, n=1385) EEG can in principle be substituted for MEG

Slide 65

Slide 65 text

Summary What shall I remember? 1. MEG contains unique information on cognitive aging 2. MEG source power is a good feature 3. Tree-based methods bring flexible handling of NA’s 4. Statistical-mathematical shortcuts can help avoid source localization 5. EEG may be substituted for MEG (when predicting age)

Slide 66

Slide 66 text

Resources - scalable processing of M/EEG data http://mne.tools

Slide 67

Slide 67 text

Resources - scalable processing of M/EEG data Jas, Engemann, et al. (2017) NIMG http://autoreject.github.io http://mne.tools

Slide 68

Slide 68 text

Resources - scalable processing of M/EEG data http://autoreject.github.io Covariance estimation: Engemann & Gramfort (2015) NIMG Jas, Engemann, et al. (2017) NIMG http://mne.tools

Slide 69

Slide 69 text

Resources - scalable processing of M/EEG data http://autoreject.github.io Covariance estimation: Engemann & Gramfort (2015) NIMG https://mne.tools/mne-hcp/ Jas, Engemann, et al. (2017) NIMG http://mne.tools

Slide 70

Slide 70 text

Resources - scalable processing of M/EEG data http://autoreject.github.io http://mne.tools Covariance estimation: Engemann & Gramfort (2015) NIMG https://mne.tools/mne-r/ https://mne.tools/mne-hcp/ Jas, Engemann, et al. (2017) NIMG

Slide 71

Slide 71 text

Thank you! Oleh Kozynets Guillaume Lemaître David Sabbagh Pierre Ablin Franz Liem Gaël Varoquaux Alexandre Gramfort Contact [email protected] www.denis-engemann.de github: @dengemann twitter: @dngman Danilo Bzdok Bertrand Thirion