Slide 91
Slide 91 text
But I’m here to see Python code
>>> jokes2vec.most_similar('facebook’)
[('fb', 0.7791515588760376),
('unfriend', 0.7512669563293457),
('status', 0.7433165907859802),
('myspac', 0.7160271406173706),
('notif', 0.6782281398773193),
('retweet', 0.6745551824569702),
('timelin', 0.672653079032898),
('twitter', 0.6709973812103271),
('privaci', 0.6695473194122314),
('linkedin', 0.6655823588371277)]
• Pre-Processing
● Transform into word lists
● Remove Stop Words
● Stemming
• Obtain word embeddings
• Visualize
• Embeddings “algebra”
● Semantic similarity