×
Copy
Open
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
Zac Manchester Harvard University Recursive Inertia Estimation with Semidefinite Programming Mason Peck Cornell University
Slide 2
Slide 2 text
Why? 1
Slide 3
Slide 3 text
Gyrostat Dynamics 2 Inertia Rotor Torque External Torque Angular Velocity Rotor Momentum J ˙ ! + !⇥(J! + ⇢) + ˙ ⇢ = ⌧
Slide 4
Slide 4 text
A Least-‐Squares Problem 3 j = ⇥ J11 J22 J33 J12 J13 J23 ⇤T
Slide 5
Slide 5 text
A Least-‐Squares Problem 4 J! = G(!)j j = ⇥ J11 J22 J33 J12 J13 J23 ⇤T
Slide 6
Slide 6 text
A Least-‐Squares Problem 5 J! = G(!)j G( ˙ !) + !⇥G(!) j = ⌧ ˙ ⇢ !⇥⇢ j = ⇥ J11 J22 J33 J12 J13 J23 ⇤T
Slide 7
Slide 7 text
A Least-‐Squares Problem 6 J! = G(!)j H y G( ˙ !) + !⇥G(!) j = ⌧ ˙ ⇢ !⇥⇢ j = ⇥ J11 J22 J33 J12 J13 J23 ⇤T
Slide 8
Slide 8 text
A Least-‐Squares Problem 7 J! = G(!)j H y G( ˙ !) + !⇥G(!) j = ⌧ ˙ ⇢ !⇥⇢ H(!, ˙ !)j = y(!, ⇢, ˙ ⇢, ⌧) j = ⇥ J11 J22 J33 J12 J13 J23 ⇤T
Slide 9
Slide 9 text
Some Least-‐Squares Problems… 8 H(!, ˙ !)j = y(!, ⇢, ˙ ⇢, ⌧)
Slide 10
Slide 10 text
Some Least-‐Squares Problems… 9 H(!, ˙ !)j = y(!, ⇢, ˙ ⇢, ⌧) We don’t have measurements of this
Slide 11
Slide 11 text
Some Least-‐Squares Problems… 10 H(!, ˙ !)j = y(!, ⇢, ˙ ⇢, ⌧) We don’t have measurements of this This doesn’t necessarily form a valid inertia matrix
Slide 12
Slide 12 text
Principle of Least Action 11 L(q, ˙ q) = T V S = Z tf t0 L (q(t), ˙ q(t)) dt = 0
Slide 13
Slide 13 text
12 Discrete Mechanics = N X k=0 Z tk+1 tk L(q, ˙ q) dt S = Z tf t0 L(q, ˙ q) dt
Slide 14
Slide 14 text
13 Discrete Mechanics = N X k=0 Z tk+1 tk L(q, ˙ q) dt S = Z tf t0 L(q, ˙ q) dt ⇡ N X k=0 L ✓ qk, qk+1 qk h ◆ h
Slide 15
Slide 15 text
14 Discrete Mechanics = N X k=0 Z tk+1 tk L(q, ˙ q) dt S = Z tf t0 L(q, ˙ q) dt Sd = N X k=0 Ld(qk, qk+1) = 0 ⇡ N X k=0 L ✓ qk, qk+1 qk h ◆ h
Slide 16
Slide 16 text
15 Discrete Gyrostat Equation fk = 2 6 6 6 4 k q 1 T k k 3 7 7 7 5 H( k , k+1)j = y( k , k+1 , ⇢k , ⇢k+1 , ⌧k+1)
Slide 17
Slide 17 text
16 What Makes A “Valid” Inertia Matrix?
Slide 18
Slide 18 text
17 J 2 S3 What Makes A “Valid” Inertia Matrix?
Slide 19
Slide 19 text
What Makes A “Valid” Inertia Matrix? 18 J 2 S3 J > 0 x T Jx > 0 8 x 6= 0
Slide 20
Slide 20 text
19 J 2 S3 J > 0 Jii Jkk + J`` x T Jx > 0 8 x 6= 0 What Makes A “Valid” Inertia Matrix?
Slide 21
Slide 21 text
Semidefinite Programming (SDP) 20 minimize x cT x subject to F0 + n X i =1 xiFi 0 x z z y 0
Slide 22
Slide 22 text
21 Schur Complement A B BT C 0 =) ( C > 0 A BC 1BT 0
Slide 23
Slide 23 text
22 SDP Inertia Estimation Formulation minimize ⇥ · · · 0 · · · 1 ⇤ i s subject to 8 > > > > > > > > < > > > > > > > > : s ( Hj y ) T ( Hj y ) I 0 J > 0 J11 + J22 J33 0 J11 + J33 J22 0 J22 + J33 J11 0
Slide 24
Slide 24 text
0 20 40 60 80 -0.2 -0.1 0 0.1 1 0 20 40 60 80 -0.1 -0.05 0 0.05 2 0 20 40 60 80 Time (s) -0.04 -0.02 0 0.02 3 0 20 40 60 80 -0.05 0 0.05 0.1 1 0 20 40 60 80 -0.05 0 0.05 0.1 2 0 20 40 60 80 Time (s) -0.05 0 0.05 0.1 3 23 Slewing Spacecraft Example
Slide 25
Slide 25 text
0 20 40 60 80 10-9 10-7 10-5 10-3 10-1 J 11 SDP Variational SDP Finite Diff. Momentum Based 0 20 40 60 80 10-9 10-7 10-5 10-3 10-1 J 22 0 20 40 60 80 Time (s) 10-9 10-7 10-5 10-3 10-1 J 33 0 20 40 60 80 10-9 10-7 10-5 10-3 10-1 J 12 0 20 40 60 80 10-9 10-7 10-5 10-3 10-1 J 13 0 20 40 60 80 Time (s) 10-9 10-7 10-5 10-3 10-1 J 23 24 Slewing Spacecraft Example
Slide 26
Slide 26 text
0 10 20 30 40 50 60 -0.2 0 0.2 1 0 10 20 30 40 50 60 -0.2 -0.1 0 0.1 2 0 10 20 30 40 50 60 Time (s) 0.76 0.77 0.78 0.79 3 0 10 20 30 40 50 60 -0.1 0 0.1 1 0 10 20 30 40 50 60 -0.1 0 0.1 2 0 10 20 30 40 50 60 Time (s) -0.1 0 0.1 3 25 Spinning Spacecraft Example
Slide 27
Slide 27 text
0 10 20 30 40 50 60 10-8 10-6 10-4 10-2 100 J 12 0 10 20 30 40 50 60 10-8 10-6 10-4 10-2 100 J 13 0 10 20 30 40 50 60 Time (s) 10-8 10-6 10-4 10-2 100 J 23 0 10 20 30 40 50 60 10-8 10-6 10-4 10-2 100 J 11 SDP Variational SDP Finite Diff. Momentum Based 0 10 20 30 40 50 60 10-8 10-6 10-4 10-2 100 J 22 0 10 20 30 40 50 60 Time (s) 10-8 10-6 10-4 10-2 100 J 33 26 Spinning Spacecraft Example
Slide 28
Slide 28 text
27 Conclusions • SDP formulation guarantees that a valid inertia is returned • Discrete mechanics formulation eliminates noise amplification problems • A priori knowledge can be included in the estimator to improve convergence
Slide 29
Slide 29 text
Questions? 28
[email protected]