Slide 1

Slide 1 text

Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses Szilard Pafka, PhD Chief Scientist, Epoch LA Data Science Meetup Aug 2019

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

Disclaimer: I am not representing my employer (Epoch) in this talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

y = f (x1, x2, ... , xn) Source: Hastie etal, ESL 2ed

Slide 10

Slide 10 text

y = f (x1, x2, ... , xn)

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

#1 Use the Right Algo

Slide 16

Slide 16 text

Source: Andrew Ng

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

*

Slide 35

Slide 35 text

#2 Use Open Source

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

in 2006 - cost was not a factor! - data.frame - [800] packages

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

#3 Simple > Complex

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

10x

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

No content

Slide 59

Slide 59 text

No content

Slide 60

Slide 60 text

#4 Incorporate Domain Knowledge Do Feature Engineering (Still) Explore Your Data Clean Your Data

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

No content

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

No content

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

#5 Do Proper Validation Avoid: Overfitting, Data Leakage

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

No content

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

No content

Slide 81

Slide 81 text

No content

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

No content

Slide 84

Slide 84 text

No content

Slide 85

Slide 85 text

No content

Slide 86

Slide 86 text

No content

Slide 87

Slide 87 text

#6 Batch or Real-Time Scoring?

Slide 88

Slide 88 text

No content

Slide 89

Slide 89 text

https://medium.com/@HarlanH/patterns-for-connecting-predictive-models-to-software-products-f9b6e923f02d

Slide 90

Slide 90 text

https://medium.com/@dvelsner/deploying-a-simple-machine-learning-model-in-a-modern-web-application-flask-angular-docker-a657db075280 your app

Slide 91

Slide 91 text

No content

Slide 92

Slide 92 text

No content

Slide 93

Slide 93 text

R/Python: - Slow(er) - Encoding of categ. variables

Slide 94

Slide 94 text

#7 Do Online Validation as Well

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/2/orientation

Slide 97

Slide 97 text

https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/2/orientation

Slide 98

Slide 98 text

https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/2/orientation https://www.slideshare.net/FaisalZakariaSiddiqi/netflix-recommendations-feature-engineering-with-time-travel

Slide 99

Slide 99 text

#8 Monitor Your Models

Slide 100

Slide 100 text

No content

Slide 101

Slide 101 text

https://www.retentionscience.com/blog/automating-machine-learning-monitoring-rs-labs/

Slide 102

Slide 102 text

https://www.retentionscience.com/blog/automating-machine-learning-monitoring-rs-labs/

Slide 103

Slide 103 text

No content

Slide 104

Slide 104 text

20% 80% (my guess)

Slide 105

Slide 105 text

20% 80% (my guess)

Slide 106

Slide 106 text

#9 Business Value Seek / Measure / Sell

Slide 107

Slide 107 text

No content

Slide 108

Slide 108 text

No content

Slide 109

Slide 109 text

No content

Slide 110

Slide 110 text

No content

Slide 111

Slide 111 text

No content

Slide 112

Slide 112 text

#10 Make it Reproducible

Slide 113

Slide 113 text

No content

Slide 114

Slide 114 text

No content

Slide 115

Slide 115 text

No content

Slide 116

Slide 116 text

No content

Slide 117

Slide 117 text

No content

Slide 118

Slide 118 text

No content

Slide 119

Slide 119 text

No content

Slide 120

Slide 120 text

No content

Slide 121

Slide 121 text

No content

Slide 122

Slide 122 text

Cloud (servers)

Slide 123

Slide 123 text

ML training: lots of CPU cores lots of RAM limited time

Slide 124

Slide 124 text

ML training: lots of CPU cores lots of RAM limited time ML scoring: separated servers

Slide 125

Slide 125 text

ML (cloud) services (MLaaS)

Slide 126

Slide 126 text

No content

Slide 127

Slide 127 text

“people that know what they’re doing just use open source [...] the same open source tools that the MLaaS services offer” - Bradford Cross

Slide 128

Slide 128 text

Kaggle

Slide 129

Slide 129 text

No content

Slide 130

Slide 130 text

already pre-processed data less domain knowledge (or deliberately hidden) AUC 0.0001 increases "relevant" no business metric no actual deployment models too complex no online evaluation no monitoring data leakage

Slide 131

Slide 131 text

Tuning and Auto ML

Slide 132

Slide 132 text

Ben Recht, Kevin Jamieson: http://www.argmin.net/2016/06/20/hypertuning/

Slide 133

Slide 133 text

GPUs

Slide 134

Slide 134 text

Aggregation 100M rows 1M groups Join 100M rows x 1M rows time [s] time [s]

Slide 135

Slide 135 text

Aggregation 100M rows 1M groups Join 100M rows x 1M rows time [s] time [s] “Motherfucka!”

Slide 136

Slide 136 text

No content

Slide 137

Slide 137 text

API and GUIs

Slide 138

Slide 138 text

No content

Slide 139

Slide 139 text

No content

Slide 140

Slide 140 text

AI?

Slide 141

Slide 141 text

No content

Slide 142

Slide 142 text

No content

Slide 143

Slide 143 text

No content

Slide 144

Slide 144 text

How to Start?

Slide 145

Slide 145 text

No content

Slide 146

Slide 146 text

No content