Slide 1

Slide 1 text

Proofs without Words Dana C. Ernst Northern Arizona University Mathematics & Statistics Department http://danaernst.com Friday Afternoon Mathematics Undergraduate Seminar September 20, 2013 D.C. Ernst Proofs without Words 1 / 17

Slide 2

Slide 2 text

Warning! Pictures can be misleading! D.C. Ernst Proofs without Words 2 / 17

Slide 3

Slide 3 text

Warning! Pictures can be misleading! D.C. Ernst Proofs without Words 2 / 17

Slide 4

Slide 4 text

Warning! Pictures can be misleading! Theorem? Hmmm, it looks like 32.5 = 31.5. D.C. Ernst Proofs without Words 2 / 17

Slide 5

Slide 5 text

D.C. Ernst Proofs without Words 3 / 17

Slide 6

Slide 6 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = n(n + 1) 2 . D.C. Ernst Proofs without Words 3 / 17

Slide 7

Slide 7 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = n(n + 1) 2 . Note The numbers Tn := 1 + 2 + · · · + n are called triangular numbers. D.C. Ernst Proofs without Words 3 / 17

Slide 8

Slide 8 text

D.C. Ernst Proofs without Words 4 / 17

Slide 9

Slide 9 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = C(n + 1, 2) := (n + 1)! 2!(n − 1)! . D.C. Ernst Proofs without Words 4 / 17

Slide 10

Slide 10 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = C(n + 1, 2) := (n + 1)! 2!(n − 1)! . Corollary For all n ∈ N, C(n + 1, 2) = n(n + 1) 2 . D.C. Ernst Proofs without Words 4 / 17

Slide 11

Slide 11 text

D.C. Ernst Proofs without Words 5 / 17

Slide 12

Slide 12 text

Theorem For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2. D.C. Ernst Proofs without Words 5 / 17

Slide 13

Slide 13 text

D.C. Ernst Proofs without Words 6 / 17

Slide 14

Slide 14 text

Theorem For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2. D.C. Ernst Proofs without Words 6 / 17

Slide 15

Slide 15 text

Theorem For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2. Note This the same as the previous theorem, but with a different visual proof. D.C. Ernst Proofs without Words 6 / 17

Slide 16

Slide 16 text

D.C. Ernst Proofs without Words 7 / 17

Slide 17

Slide 17 text

Theorem Let Pn be the nth pentagonal number. Then Pn = 3Tn−1 + n. D.C. Ernst Proofs without Words 7 / 17

Slide 18

Slide 18 text

Theorem Let Pn be the nth pentagonal number. Then Pn = 3Tn−1 + n. Note The nth pentagonal number is given by Pn := 3n2 − n 2 . D.C. Ernst Proofs without Words 7 / 17

Slide 19

Slide 19 text

D.C. Ernst Proofs without Words 8 / 17

Slide 20

Slide 20 text

Theorem (Nicomachus’ Theorem) For all n ∈ N, 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2. D.C. Ernst Proofs without Words 8 / 17

Slide 21

Slide 21 text

Theorem (Nicomachus’ Theorem) For all n ∈ N, 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2. Corollary For all n ∈ N, 13 + 23 + · · · + n3 = n(n + 1) 2 2 . D.C. Ernst Proofs without Words 8 / 17

Slide 22

Slide 22 text

D.C. Ernst Proofs without Words 9 / 17

Slide 23

Slide 23 text

Theorem The alternating sum of the first n odd natural numbers is n. In other words, for all n ∈ N, n k=1 (−1)n−k(2k − 1) = n. D.C. Ernst Proofs without Words 9 / 17

Slide 24

Slide 24 text

D.C. Ernst Proofs without Words 10 / 17

Slide 25

Slide 25 text

Theorem (Pythagorean Theorem) If a, b, c ∈ N are the lengths of the sides of a right triangle, where c the length of the hypotenuse, then a2 + b2 = c2. D.C. Ernst Proofs without Words 10 / 17

Slide 26

Slide 26 text

D.C. Ernst Proofs without Words 11 / 17

Slide 27

Slide 27 text

Theorem (Pythagorean Theorem) If a, b, c ∈ N are the lengths of the sides of a right triangle, where c the length of the hypotenuse, then a2 + b2 = c2. D.C. Ernst Proofs without Words 11 / 17

Slide 28

Slide 28 text

D.C. Ernst Proofs without Words 12 / 17

Slide 29

Slide 29 text

Theorem We have the following fact concerning integrals: π/2 0 sin2(x) dx = π 4 = π/2 0 cos2(x) dx. D.C. Ernst Proofs without Words 12 / 17

Slide 30

Slide 30 text

D.C. Ernst Proofs without Words 13 / 17

Slide 31

Slide 31 text

Theorem We have the following summation formula: ∞ k=1 1 2 k = 1. D.C. Ernst Proofs without Words 13 / 17

Slide 32

Slide 32 text

D.C. Ernst Proofs without Words 14 / 17

Slide 33

Slide 33 text

Theorem We have the following summation formula: ∞ k=1 1 4 k = 1 3 . D.C. Ernst Proofs without Words 14 / 17

Slide 34

Slide 34 text

D.C. Ernst Proofs without Words 15 / 17

Slide 35

Slide 35 text

Theorem We have the following summation formula: ∞ k=1 1 3 k = 1 2 . D.C. Ernst Proofs without Words 15 / 17

Slide 36

Slide 36 text

D.C. Ernst Proofs without Words 16 / 17

Slide 37

Slide 37 text

Theorem A circle of radius r has area πr2. D.C. Ernst Proofs without Words 16 / 17

Slide 38

Slide 38 text

Sources All the figures in this talk came from the following locations: • MathOverflow: http://mathoverflow.net/questions/8846/ proofs-without-words • Art of Problem Solving: http://www.artofproblemsolving.com/Wiki/index. php/Proofs_without_words • Strogatz, NY Times: http://opinionator.blogs.nytimes.com/2010/04/04/ take-it-to-the-limit/ D.C. Ernst Proofs without Words 17 / 17