Proofs without Words
Dana C. Ernst
Northern Arizona University
Mathematics & Statistics Department
http://danaernst.com
Friday Afternoon Mathematics Undergraduate Seminar
September 20, 2013
D.C. Ernst Proofs without Words 1 / 17
Slide 2
Slide 2 text
Warning!
Pictures can be misleading!
D.C. Ernst Proofs without Words 2 / 17
Slide 3
Slide 3 text
Warning!
Pictures can be misleading!
D.C. Ernst Proofs without Words 2 / 17
Slide 4
Slide 4 text
Warning!
Pictures can be misleading!
Theorem?
Hmmm, it looks like 32.5 = 31.5.
D.C. Ernst Proofs without Words 2 / 17
Slide 5
Slide 5 text
D.C. Ernst Proofs without Words 3 / 17
Slide 6
Slide 6 text
Theorem
For all n ∈ N, 1 + 2 + · · · + n =
n(n + 1)
2
.
D.C. Ernst Proofs without Words 3 / 17
Slide 7
Slide 7 text
Theorem
For all n ∈ N, 1 + 2 + · · · + n =
n(n + 1)
2
.
Note
The numbers Tn
:= 1 + 2 + · · · + n are called triangular numbers.
D.C. Ernst Proofs without Words 3 / 17
Slide 8
Slide 8 text
D.C. Ernst Proofs without Words 4 / 17
Slide 9
Slide 9 text
Theorem
For all n ∈ N, 1 + 2 + · · · + n = C(n + 1, 2) :=
(n + 1)!
2!(n − 1)!
.
D.C. Ernst Proofs without Words 4 / 17
Slide 10
Slide 10 text
Theorem
For all n ∈ N, 1 + 2 + · · · + n = C(n + 1, 2) :=
(n + 1)!
2!(n − 1)!
.
Corollary
For all n ∈ N, C(n + 1, 2) =
n(n + 1)
2
.
D.C. Ernst Proofs without Words 4 / 17
Slide 11
Slide 11 text
D.C. Ernst Proofs without Words 5 / 17
Slide 12
Slide 12 text
Theorem
For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2.
D.C. Ernst Proofs without Words 5 / 17
Slide 13
Slide 13 text
D.C. Ernst Proofs without Words 6 / 17
Slide 14
Slide 14 text
Theorem
For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2.
D.C. Ernst Proofs without Words 6 / 17
Slide 15
Slide 15 text
Theorem
For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2.
Note
This the same as the previous theorem, but with a different visual
proof.
D.C. Ernst Proofs without Words 6 / 17
Slide 16
Slide 16 text
D.C. Ernst Proofs without Words 7 / 17
Slide 17
Slide 17 text
Theorem
Let Pn
be the nth pentagonal number. Then Pn
= 3Tn−1
+ n.
D.C. Ernst Proofs without Words 7 / 17
Slide 18
Slide 18 text
Theorem
Let Pn
be the nth pentagonal number. Then Pn
= 3Tn−1
+ n.
Note
The nth pentagonal number is given by Pn
:=
3n2 − n
2
.
D.C. Ernst Proofs without Words 7 / 17
Slide 19
Slide 19 text
D.C. Ernst Proofs without Words 8 / 17
Slide 20
Slide 20 text
Theorem (Nicomachus’ Theorem)
For all n ∈ N, 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2.
D.C. Ernst Proofs without Words 8 / 17
Slide 21
Slide 21 text
Theorem (Nicomachus’ Theorem)
For all n ∈ N, 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2.
Corollary
For all n ∈ N, 13 + 23 + · · · + n3 =
n(n + 1)
2
2
.
D.C. Ernst Proofs without Words 8 / 17
Slide 22
Slide 22 text
D.C. Ernst Proofs without Words 9 / 17
Slide 23
Slide 23 text
Theorem
The alternating sum of the first n odd natural numbers is n. In
other words, for all n ∈ N,
n
k=1
(−1)n−k(2k − 1) = n.
D.C. Ernst Proofs without Words 9 / 17
Slide 24
Slide 24 text
D.C. Ernst Proofs without Words 10 / 17
Slide 25
Slide 25 text
Theorem (Pythagorean Theorem)
If a, b, c ∈ N are the lengths of the sides of a right triangle, where
c the length of the hypotenuse, then a2 + b2 = c2.
D.C. Ernst Proofs without Words 10 / 17
Slide 26
Slide 26 text
D.C. Ernst Proofs without Words 11 / 17
Slide 27
Slide 27 text
Theorem (Pythagorean Theorem)
If a, b, c ∈ N are the lengths of the sides of a right triangle, where
c the length of the hypotenuse, then a2 + b2 = c2.
D.C. Ernst Proofs without Words 11 / 17
Slide 28
Slide 28 text
D.C. Ernst Proofs without Words 12 / 17
Slide 29
Slide 29 text
Theorem
We have the following fact concerning integrals:
π/2
0
sin2(x) dx =
π
4
=
π/2
0
cos2(x) dx.
D.C. Ernst Proofs without Words 12 / 17
Slide 30
Slide 30 text
D.C. Ernst Proofs without Words 13 / 17
Slide 31
Slide 31 text
Theorem
We have the following summation formula:
∞
k=1
1
2
k
= 1.
D.C. Ernst Proofs without Words 13 / 17
Slide 32
Slide 32 text
D.C. Ernst Proofs without Words 14 / 17
Slide 33
Slide 33 text
Theorem
We have the following summation formula:
∞
k=1
1
4
k
=
1
3
.
D.C. Ernst Proofs without Words 14 / 17
Slide 34
Slide 34 text
D.C. Ernst Proofs without Words 15 / 17
Slide 35
Slide 35 text
Theorem
We have the following summation formula:
∞
k=1
1
3
k
=
1
2
.
D.C. Ernst Proofs without Words 15 / 17
Slide 36
Slide 36 text
D.C. Ernst Proofs without Words 16 / 17
Slide 37
Slide 37 text
Theorem
A circle of radius r has area πr2.
D.C. Ernst Proofs without Words 16 / 17
Slide 38
Slide 38 text
Sources
All the figures in this talk came from the following locations:
• MathOverflow:
http://mathoverflow.net/questions/8846/
proofs-without-words
• Art of Problem Solving:
http://www.artofproblemsolving.com/Wiki/index.
php/Proofs_without_words
• Strogatz, NY Times:
http://opinionator.blogs.nytimes.com/2010/04/04/
take-it-to-the-limit/
D.C. Ernst Proofs without Words 17 / 17