Slide 1

Slide 1 text

ʮύλʔϯೝࣝͱػցֶशʯ ྠಡษڧձ ʙࢦ਺ܕ෼෍଒ɾϊϯύϥϝτϦοΫ๏ʙ

Slide 2

Slide 2 text

ࣗݾ঺հ w ໊લ w খּݪޫو .JUTVLJ0("4")"3" w ೖࣾ೥౓ w ೥౓ w ॴଐ w ג $ZCFS;։ൃΤϯδχΞ w ֶੜ࣌୅ͷݚڀ෼໺ w ࣗવݴޠॲཧɾػցֶश

Slide 3

Slide 3 text

໨࣍ w ࢦ਺ܕ෼෍଒ w ࠷໬ਪఆͱे෼౷ܭྔ w ڞ໾ࣄલ෼෍ w ແ৘ใࣄલ෼෍ w ϊϯύϥϝτϦοΫ๏ w Χʔωϧີ౓ਪఆ๏ w ࠷ۙ๣๏

Slide 4

Slide 4 text

ࢦ਺ܕ෼෍଒ Q w ࣜ Ͱఆٛ͞ΕΔ෼෍ͷ଒ ू߹ ! w ʮΨ΢ε෼෍ʯʮଟ߲෼෍ʯͳͲɺ
 13.-ʹग़ͯ͘Δଟ͘ͷ෼෍͕ࢦ਺ܕ෼෍଒ʹؚ·ΕΔ
 ˠࣜ Ͱఆٛ͠௚͢͜ͱ͕Ͱ͖Δ w ˞Y͸εΧϥʔͰ΋ϕΫτϧͰ΋ྑ͍ w ˞Y͸཭ࢄͰ΋࿈ଓͰ΋ྑ͍

Slide 5

Slide 5 text

ࢦ਺ܕ෼෍଒ Q ! w Yʹؔ͢Δؔ਺ w TDBMJOHDPOTUBOUͱ΋ݺ͹Ε .-B11ΑΓ ɺ
 ʮʯ͕ೖΔ͜ͱ΋͋Δ ϕϧψʔΠ෼෍ɺΨϯϚ෼෍ h ( x )

Slide 6

Slide 6 text

ࢦ਺ܕ෼෍଒ Q ! w Бʹؔ͢Δؔ਺ w ֬཰ີ౓ؔ਺ͷੵ෼஋͕ʹͳΔΑ͏ʹ
 ਖ਼نԽ͢ΔͨΊͷ΋ͷ g(⌘) g ( ⌘ ) Z h (x) exp ⌘T u (x) d x = 1 Z ( ⌘ ) = 1 g ( ⌘ ) = Z h (x) exp ⌘T u (x) d x

Slide 7

Slide 7 text

ϕϧψʔΠ෼෍͸ࢦ਺ܕ෼෍଒͔ʁ ! w ແཧ΍ΓFYQͷதʹೖΕͯΈΔ ! ! ! w БΛࣜ ͷΑ͏ʹఆٛ͢Δ Bern ( x | µ ) = µx(1 µ )1 x Bern(x | µ) = exp { ln µx (1 µ) 1 x} = exp { x ln µ + (1 x) ln 1 µ } = exp { x(ln µ ln 1 µ) + ln 1 µ } = (1 µ) exp { ln( µ 1 µ )x } ⌘ = ln( µ 1 µ )

Slide 8

Slide 8 text

ϕϧψʔΠ෼෍͸ࢦ਺ܕ෼෍଒͔ʁ ! w ࠷ऴతʹ͸ɺ ! w ͱͳΓɺࣜ ͱରԠͨ͠ Bern ( x | µ ) = µx(1 µ )1 x

Slide 9

Slide 9 text

ࢀߟɿࢦ਺ܕ෼෍଒ʹؚ·Εͳ͍΋ͷ w ࠞ߹ਖ਼ن෼෍
 
 
 
 FYQͷ࿨ʹͳͬͯ͠·͍ɺࣜ ʹ͸ͳΒͳ͍

Slide 10

Slide 10 text

࠷໬ਪఆ w ࢦ਺ܕ෼෍଒ͷҰൠܗͷࣜ ͔Βɺ
 ࠷໬ਪఆྔБΛٻΊΔ w ಠཱʹಉ෼෍ʹै͏σʔλू߹9ʹ͍ͭͯߟ͑Δͱɺ
 ͜ͷ໬౓ؔ਺͸ ! w ର਺໬౓ؔ਺͸

Slide 11

Slide 11 text

࠷໬ਪఆ w ର਺໬౓ؔ਺ͷ Бʹؔͯ͠ͷ ޯ഑͕ͱͳΔ஋Λݟͭ ͚͍ͨ

Slide 12

Slide 12 text

࠷໬ਪఆ w ݪଇͱͯ͠ɺࣜ Λղ͘ͱБ͸ಘΒΕΔ ! ! w ·ͨɺ࠷໬ਪఆ஋͸ʹґଘ͢Δ े෼౷ܭྔ w ݴ͍׵͑Δͱɺ࠷໬ਪఆΛٻΊΔͨΊʹ͸ɺ
 ɹɹɹͷ૯࿨ ·ͨ͸ฏۉ ͷΈ͕͋Ε͹Α͍

Slide 13

Slide 13 text

࠷໬ਪఆͱਅͷύϥϝʔλ w Бͷ࠷໬ਪఆ஋͸ࣜ Λղ͘ͱಘΒΕΔ ! ! w ͷఆٛʹجͮ͘ͱɺ ! ! w ͭ·Γɺ/ˠ㱣ͷۃݶͰ͸ɺ࠷໬ਪఆ஋ʹਅͷ஋ g ( ⌘ ) Z h (x) exp ⌘T u (x) d x = 1

Slide 14

Slide 14 text

ڞ໾ࣄલ෼෍ w ࢦ਺ܕ෼෍଒ͷ೚ҙͷ෼෍ʹ͍ͭͯɺ
 ࣍ͷܗͰॻ͚Δڞ໾ࣄલ෼෍͕ଘࡏ͢Δ ! w ಋग़͸ॻ͍ͯͳ͍͕ɺڞ໾Ͱ͋Δ͜ͱ͕͔֬ΊΒΕΔ
 ໬౓ؔ਺ ͱࣄલ෼෍ Λ͔͚ɺ
 ࣄޙ෼෍ΛٻΊΔ

Slide 15

Slide 15 text

ڞ໾ࣄલ෼෍ w ಋग़͸ॻ͍ͯͳ͍͕ɺڞ໾Ͱ͋Δ͜ͱ͕͔֬ΊΒΕΔ
 ໬౓ؔ਺ ͱࣄલ෼෍ Λ͔͚ɺ
 ࣄޙ෼෍ΛٻΊΔ

Slide 16

Slide 16 text

ڞ໾ࣄલ෼෍ w ࣄલ෼෍ͷύϥϝʔλΛɺ
 Ծ૝؍ଌ஋ͱͯ͠ղऍ͢Δ͜ͱ΋Ͱ͖Δ ! ! ! ! w DGQɹೋ߲෼෍ͷڞ໾ࣄલ෼෍ʮϕʔλ෼෍ʯͷ
 ɹɹɹɹɹύϥϝʔλΛɺԾ૝ͷ؍ଌͱͯ͠ղऍͨ͠ Ծ૝ͷ؍ଌ਺
 /ʹ૬౰ Ծ૝ͷ؍ଌ஋
 V Y ʹ૬౰

Slide 17

Slide 17 text

ແ৘ใࣄલ෼෍ w ࣄલ෼෍Λஔ͖͍͕ͨɺ෼෍ ΍ύϥϝʔλ ʹ͍ͭͯͷ
 ஌͕ࣝͳ͍ͱ͖ w Ұ༷෼෍Λஔ͚͹ྑ͍ʁ ! w Е͕࿈ଓ͔ͭൣғ͕ܾ·ͬͯͳ͍ͱ͖ɺ
 Еʹ͍ͭͯͷੵ෼͕ൃࢄͯ͠͠·͍ɺਖ਼نԽͰ͖ͳ͍
 ˠมଇࣄલ෼෍

Slide 18

Slide 18 text

ແ৘ใࣄલ෼෍ w ࣍ͷΑ͏ͳฏߦҠಈෆมੑΛ࣋ͬͨ෼෍Λߟ͑Δ
 ྫɿਖ਼ن෼෍ 
 w ˞ฏߦҠಈෆมੑ w YΛఆ਺෼Ҡಈͯ͠΋ɺҐஔύϥϝʔλЖΛಉ͚ͩ͡Ҡಈ͢Ε͹ɺ
 ֬཰ີ౓ͷܗ͸มΘΒͳ͍ ͷͱ͖ ͱ͢Δͱɺ

Slide 19

Slide 19 text

ແ৘ใࣄલ෼෍ w ฏߦҠಈෆมੑΛ࣋ͭࣄલ෼෍ʹ͍ͭͯߟ͑Δͱɺ
 ੵ෼͕۠ؒฏߦҠಈͯ͠΋ɺͦͷ֬཰͸มΘΒͳ͍ ! ! w Αͬͯɺࣜ ΑΓఆ਺ͱͳΔ


Slide 20

Slide 20 text

ແ৘ใࣄલ෼෍ w Ψ΢ε෼෍ͷЖͷ৔߹ɺ
 М@?ˠ㱣ͷۃݶͰແ৘ใࣄલ෼෍ͱͳΔ ! ! ! w ࣄޙ෼෍ʹɺࣄલ෼෍ͷύϥϝʔλ͕Өڹ͠ͳ͘ͳΔ

Slide 21

Slide 21 text

ϊϯύϥϝτϦοΫ๏ w ύϥϝτϦοΫ w ີ౓ؔ਺ Ϟσϧ ΛબΜͰɺύϥϝʔλΛσʔλ͔Βਪఆ͢Δ
 ˠϞσϧ͕σʔλΛද͢ͷʹශऑͩͱɺ༧ଌਫ਼౓͸ѱ͍ w ྫ Ψ΢ε෼෍Λσʔλʹ౰ͯ͸ΊͯɺЖɾМ?Λਪఆͨ͠
 ˠσʔλ͕ଟๆੑͩͱɺΨ΢ε෼෍Ͱ͸ଊ͑ΒΕͳ͍ w ϊϯύϥϝτϦοΫ w ෼෍ͷܗঢ়ʹஔ͘Ծఆ͕গͳ͍ w ྫ ଟๆੑͩͱ͔୯ๆੑͳͲͷԾఆ͸ஔ͔ͳ͍

Slide 22

Slide 22 text

ώετάϥϜີ౓ਪఆ๏ w ਅͷ֬཰ີ౓ؔ਺ ྘ઢ ͔Β
 ੜ੒͞Εͨͷσʔλ఺ΑΓ
 ਪఆ ੨ώετάϥϜ ͨ͠΋ͷ w YΛ෯϶ͷ۠ؒʹ۠੾Γɺ
 ͦͷ۠ؒʹೖͬͨYͷ؍ଌ਺Λ
 Χ΢ϯτ͢Δɻ
 ͜ΕΛɺࣜ Ͱਖ਼نԽͨ͠΋ͷ

Slide 23

Slide 23 text

ώετάϥϜີ౓ਪఆ๏ w ࣍ݩɾ̎࣍ݩఔ౓ͷ؆୯ͳՄࢹԽʹ͸໾ཱͭɺ
 ؆ศͳํ๏ w ͜ͷΞϓϩʔν͔Βɺ࣍ͷ͕̎ͭΘ͔Δ w ͋Δ஋ͷ֬཰ີ౓Λਪఆ͢Δʹ͸ɺۙ๣ͷ؍ଌ఺ͷ஋Λߟྀ͢Δ ඞཁ͕͋Δ w ۠ؒͷ෯͸େ͖͗ͯ͢΋
 খ͗ͯ͢͞΋͍͚ͳ͍ w খɿσʔλʹӨڹ͗͢͠Δ w େɿݩͷ෼෍Λશ͘࠶ݱͰ͖ͳ͍ w ˠϞσϧͷෳࡶ͞ͷબ୒ʹࣅ͍ͯΔ

Slide 24

Slide 24 text

ώετάϥϜີ౓ਪఆ๏ͷ໰୊఺ w ਪఆͨ͠ີ౓͕ෆ࿈ଓͰ͋Δ ۠ؒͱ۠ؒͷؒ w ࣍ݩͷढ͍ w Yͷ࣍ݩ਺Λ%ͱ͢Δͱɺ۠ؒͷ૯਺͸.?%ݸ

Slide 25

Slide 25 text

Χʔωϧີ౓ਪఆ๏ w ະ஌ͷ֬཰ີ౓Q Y ͔ΒಘΒΕͨ؍ଌू߹Λ࢖ͬͯɺ
 Q Y ͷ஋Λਪఆ͍ͨ͠ w YΛؚΉখ͞ͳྖҬ3ͷ֬཰Λ1ͱ͢Δ ! w /ݸͷ؍ଌ஋͕ಘΒΕͨͱͯ͠ɺ,ݸͷ؍ଌ஋͕
 3ʹؚ·ΕΔ֬཰͸ɺೋ߲෼෍ʹै͏ P = Z R p( x )d x p(K|N, P) = Bin(K|N, P)

Slide 26

Slide 26 text

Χʔωϧີ౓ਪఆ๏ w ೋ߲෼෍ͷظ଴஋ɾ෼ࢄΑΓɺ࣍ͷؔ܎͕ࣜಘΒΕΔ
 
 
 w /͕େ͖͍ͱ͖ɺ෼ࢄ͸খ͘͞ͳΓɺظ଴஋ͷؔ܎͔Β w ·ͨɺ3͕খ͘͞ɺQ Y ͕3಺ͰҰఆͩͱۙࣅ͢Δͱ w Ҏ্ΑΓɺ࣍ͷີ౓ਪఆͷؔ܎͕ࣜಘΒΕΔ var  K N = P(1 P) N E  K N = P K ' NP P ' p( x )V p( x ) = K NV

Slide 27

Slide 27 text

Χʔωϧີ౓ਪఆ๏ w Ҏ্ΑΓɺ࣍ͷີ౓ਪఆͷؔ܎͕ࣜಘΒΕΔ ! w ֬཰ີ౓Q Y Λਪఆ͢ΔͨΊʹɺ,ͱ7Λਪఆ͢Δ w ,ΛݻఆͰ7Λਪఆ
 ˠ,ۙ๣ີ౓ਪఆ๏ w 7ΛݻఆͰ,Λਪఆ
 ˠΧʔωϧີ౓ਪఆ๏ p( x ) = K NV

Slide 28

Slide 28 text

Χʔωϧີ౓ਪఆ๏ w 7Λݻఆ͠ɺ,Λਪఆ͍ͨ͠ w ֬཰ີ౓Q Y ΛٻΊ͍ͨ఺ΛYɺ؍ଌ఺ΛY@Oͱ͢Δ w Ұล͕IͰɺYΛத৺ͱ͢Δখ͞ͳ௒ཱํମͷ
 தʹ͋Δ఺ͷ૯਺͸ ! w ҰลIͷ௒ཱํମͳͷͰɺ7͸I?%ͱͳΓɺ K = K X n=1 k ✓ x xn h ◆ p( x ) = 1 N K X n=1 1 hD k ✓ x xn h ◆

Slide 29

Slide 29 text

Χʔωϧີ౓ਪఆ๏ w খ͞ͳ௒ཱํମͷҰลIͷେ͖͕͞
 ฏ׈ԽͷͨΊͷύϥϝʔλʹͳ͍ͬͯΔ w I͕ݻఆʹͳͬͯ͠·͏
 ˠσʔλີ౓͕ߴ͍ྖҬͱ௿͍ྖҬͰɺෆ౎߹͕͋Δ

Slide 30

Slide 30 text

,ۙ๣ີ౓ਪఆ๏ w ,Λݻఆ͠ɺ7Λਪఆ͍ͨ͠ w ֬཰ີ౓Q Y ΛٻΊ͍ͨ఺ΛYɺ؍ଌ఺ΛY@Oͱ͢Δ w YΛத৺ͱͯ͠ɺ఺͕,ݸؚ·ΕΔΑ͏ͳ௒ٿΛ୳͢ͱ
 7͸Ұҙʹఆ·Γɺ֬཰ີ౓͸ਪఆ͞ΕΔ ਤ͸XXXPDXUJUFDIBDKQJOEFYQIQ NPEVMF(FOFSBMBDUJPO%PXO-PBEpMF QEGUZQFDBMΑΓ p( x ) = K NV

Slide 31

Slide 31 text

,ۙ๣ີ౓ਪఆ๏ w ,͕ฏ׈Խύϥϝʔλʔͱͳ͍ͬͯΔ

Slide 32

Slide 32 text

·ͱΊΔͱʜ w Χʔωϧີ౓ਪఆ๏ w ྖҬͷମੵΛݻఆ͢Δ w Ұลͷ௕͕͞Iͳ௒ཱํମʹɺ؍ଌ఺YO͕Կݸ͋Δ͔ΛٻΊͨ w I͕ฏ׈Խύϥϝʔλʔ w ,ۙ๣๏ w ྖҬ಺ͷɺ؍ଌ఺YOͷݸ਺Λݻఆ͢Δ w ؍ଌ఺YO͕LݸʹͳΔΑ͏ʹɺྖҬΛ޿͛ͨ w L͕ฏ׈Խύϥϝʔλʔ

Slide 33

Slide 33 text

,ۙ๣๏Λ࢖ͬͨΫϥε෼ྨ w ,ۙ๣๏ͱ."1ਪఆΛ࢖ͬͯɺΫϥε෼ྨΛߦ͏ w YͷΫϥε$@Lͷࣄޙ֬཰ΛٻΊ͍ͨ

Slide 34

Slide 34 text

,ۙ๣๏Λ࢖ͬͨΫϥε෼ྨ w ϕΠζͷఆཧΑΓɺ ! w ֬཰ີ౓Q Y ͸ɺઌ΄ͲٻΊͨͱ͓Γ ! w ࣄલ෼෍͸ɺશͯͷ؍ଌ఺ͷ͏ͪΫϥεʹଐ͢Δ؍ଌ఺ ! w ໬౓͸ɺͦͷΫϥεʹଐ͢Δ؍ଌ఺Ͱͷ֬཰ີ౓ΑΓɺ p(Ck | x ) = p( x |Ck)p(Ck) p( x ) p( x ) = K NV p(Ck) = Nk N p( x |Ck) = Kk NkV

Slide 35

Slide 35 text

,ۙ๣๏Λ࢖ͬͨΫϥε෼ྨ w ϕΠζͷఆཧʹ୅ೖ͢Δͱɺ ! w Αͬͯɺ,ۙ๣ͷ͏ͪɺΫϥε$@Lʹଐ͢Δ఺ͷ਺Ͱ
 ଟ਺ܾΛऔΕ͹Α͍ w ಛʹɺ,ͷͱ͖࠷ۙ๣๏ͱݺ͹ΕΔ p(Ck | x ) = p( x |Ck)p(Ck) p( x ) = Kk K ˖ʹ͍ۙ̏ͭͷ఺Ͱଟ਺ܾΛऔ͍ͬͯΔ ࠷ۙ๣๏Ͱ͸ɺ ࠷ۙ๣๏Ͱ͸ɺΫϥεͷҟͳΔ఺ͷରͷ
 ਨ௚ೋ౳෼ઢʹͳ͍ͬͯΔ

Slide 36

Slide 36 text

໰୊఺ w ͋ΔYͷ֬཰ີ౓Q Y Λਪఆ͢Δʹ͋ͨͬͯɺ
 શͯͷσʔλ఺Λอ࣋͢Δඞཁ͕͋Δ w σʔλ఺͕૿͑Δͱɺۙ๣Λ୳ࡧ͍͕ͯ࣌ؒ͘͠๲େʹ ͳΔ
 ˠ୳ࡧ͢ΔͨΊͷ໦ߏ଄Λ࡞Δ ຊདྷ͸ɺ࠷΋͍ۙ఺Λશ୳ࡧ͢Δඞཁ͕͋Δ

Slide 37

Slide 37 text

͓ΘΓ