Slide 1

Slide 1 text

www.alex-singleton.com @alexsingleton Consumer Data Research Centre An ESRC Data Investment Professor Alex Singleton Department of Geography and Planning, University of Liverpool Consumer Data Research and Census Enumeration

Slide 2

Slide 2 text

Consumer Data Research Centre An ESRC Data Investment

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

http://maps.cdrc.ac.uk/#/geodemographics/iuc14/default/BTTTFTT/12/-1.8265/50.7308/ http://data.cdrc.ac.uk

Slide 5

Slide 5 text

https://www.flickr.com/photos/ bluesquarething/5512923662/

Slide 6

Slide 6 text

http://www.alex-singleton.com/r/2014/02/05/2011-census-open-atlas-project-version-two/

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

“What is needed is a solution which will pick out pattern from the detail, without loosing too much of the original information, and which will admit more detailed examination of parts of the pattern which become relevant to a particular issue or local area as and when required” Webber (1978, 275).

Slide 9

Slide 9 text

http://www.google.co.uk/intl/en_uk/earth/ how?

Slide 10

Slide 10 text

http://www.google.co.uk/intl/en_uk/earth/ 52: POORER FAMILIES, MANY CHILDREN, TERRACED HOUSING 51: YOUNG PEOPLE IN SMALL, LOW COST TERRACES 59: DEPRIVED AREAS AND HIGH- RISE FLATS 11: SETTLED SUBURBIA, OLDER PEOPLE Urban Adversity Affluent Achievers

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

http://esociety.publicprofiler.org/

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

http://esociety.publicprofiler.org/ 250k views - afternoon released

Slide 15

Slide 15 text

Postcode Search Propensity by e-Society Types 0" 20" 40" 60" 80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300" Index"(Base"100)" Group"A":"E;unengaged" Group"B":"E;marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E;independents" Group"F":"Instrumental"E;users" Group"G":"E;business"users" Group"H":"E;"experts"

Slide 16

Slide 16 text

Feedback Origin 0" 20" 40" 60" 80" 100" 120" 140" 160" 180" 200" 220" 240" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"

Slide 17

Slide 17 text

Feedback Destination 0" 50" 100" 150" 200" 250" 300" 350" 400" 450" 500" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"

Slide 18

Slide 18 text

Distance to telephone exchange

Slide 19

Slide 19 text

Distance to mobile mast http://sitefinder.ofcom.org.uk/ http://www.sharegeo.ac.uk/handle/10672/372

Slide 20

Slide 20 text

Download Speeds

Slide 21

Slide 21 text

% households with Internet connection

Slide 22

Slide 22 text

% of people who mostly use mobile phone for internet access

Slide 23

Slide 23 text

% Students

Slide 24

Slide 24 text

Internet User Classification

Slide 25

Slide 25 text

An application in retail… • To what extent are retail centres exposed to populations with variable engagement in online retail

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

What do you need to know? • Estimate of those people likely to visit a retail centre • Influences on the level and type of engagement of such populations • The composition of the retail centre

Slide 28

Slide 28 text

Online&sales& Supply&factors& Demand&factors& Retail/Service& Offer& Catchments& &Demographics& Retail& e

Slide 29

Slide 29 text

Catchment Estimates LSOA (i) A - attractiveness D - distance Retail Centre (j) L LDC Pij = A↵ j D sj ij Pn j=1 A↵ j D sj ij Large, Medium, Small (s)

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

75%

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Internet User Classification: Work in Progress • National extent • Integration of multiple consumer data • Actual use / spend