Slide 60
Slide 60 text
References
Schuler, A., Baiocchi, M., Tibshirani, R., and Shah, N. A comparison of methods for model selection when estimating individual
treatment effects. arXiv preprint arXiv:1804.05146, 2018.
Imbens, G. W. and Rubin, D. B. Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, 2015.
Holland, P. W. Statistics and causal inference. Journal of the American statistical Association, 81(396):945–960, 1986.
Johansson, F. D., Shalit, U., Kallus, N., and Sontag, D. Generalization bounds and representation learning for estimation of potential
outcomes and causal effects. arXiv preprint arXiv:2001.07426, 2020.
Du, X., Sun, L., Duivesteijn, W., Nikolaev, A., and Pechenizkiy, M. Adversarial balancing-based representation learning for causal effect
inference with observational data. arXiv preprint arXiv:1904.13335, 2019.
Shi, C., Blei, D., and Veitch, V. Adapting neural networks for the estimation of treatment effects. In Advances in Neural Information
Processing Systems, pp. 2503–2513, 2019.