Slide 1

Slide 1 text

Tes$ng  Source  Finders  with   Simulated  Source  Maps   Hugh  Garsden   Stéphane  Corbel   +  WG  (John,  Dario,  Antonia,  Alexander  etc.).   LOFAR  TKP,  Amsterdam,  Dec  3-­‐5,  2012   France  

Slide 2

Slide 2 text

The  Source  Finders   PyBDSM   Pyse   Aegean   •  Python  interface,  C/ Fortran   •  In  use  in  LOFAR   Pipeline  (MSSS)   •  Lots  of  func$onality   including  wavelets   (extended  sources),   parallel  threads   •  Under  con$nual   development   •  David  Rafferty  and   Niruj  Mohan   (Leiden)   •  Python  interface,  C     •  Intended(?)  for   LOFAR  TraP   •  Less  func$onality   •  Compact,  faster   than  PyBDSM   •  Maintained  at   Amsterdam   •  Hanno  Spreeuw   (Amsterdam)   •  Python  interface,  C     •  New   •  Modern  island   flood-­‐fill  algorithm,   parallelism   •  Under  con$nual   development   •  Paul  Hancock   (Sydney)   Leave  for  now   France  

Slide 3

Slide 3 text

Source  Maps     •  Correlated noise (clean or dirty beam) •  Random elliptical Gaussians •  Benefits •  Volume (statistics) •  Control France  

Slide 4

Slide 4 text

Test  drivers   •  Python  scripts  built  for  3  source  finders   •  Batch  run  thousands  of  maps,  real  or   simulated   •  Match  against  catalogs,  real  or   simulated   •  Vary  proper$es  of  simulated  maps,  e.g..   blending  ,  noise,  size,  numbers   •  Vary  parameters  of  source  finders   France  

Slide 5

Slide 5 text

The  Results   •  The  source  finders  work!   §  99%  hit  rate  on  easy  maps  (10000   sources)   §  1024px  map  in  2-­‐3  secs   Ø  Pyse  faster   §  Loca$ons  very  accurate     §  Flux  prefy  accurate  (2%)   •  When  they  don’t  work  so  well:   •  Not  tuned  properly  (later)   •  blended  sources,  80%   •  Extended  sources     •  Can  be  outliers     France  

Slide 6

Slide 6 text

Issue:  Parameters   •  Ques$ons   §  PyBDSM  has  50  input  parameters   §  Pyse  has  “—detec$on”  “—analysis”  threshold   parameters   §  Set  the  wrong  values,  things  quickly  go  bad   §  I  and  others  obtained  values  by  discussion,   experiment,  knowledge  of  map  proper$es   •  Need  “set  and  forget”  op$on   •  Answer:  turn  on  False  Detec$on  Rate  algorithm   France  

Slide 7

Slide 7 text

Issue:  False  Detec$on  Rate   Examples:     PyBDSM   PyBDSM   Pyse   Without  FDR,   parameters  by   experiment   Hit  Rate  99.3%   False  posi$ves  0.0043%     Hit  Rate  99.8%   False  Posi$ves  0.16%   With  FDR  of  5%   Hit  rate  99.8%   False  posi$ves  544%                    OR   Hit  rate  68%   False  posi$ves  0%   Hit  rate  99.9%   False  Posi$ves  5.64%   •  The point: Seems like there are times FDR shouldn’t be used •  Need a “set and forget” to control the FDR France  

Slide 8

Slide 8 text

Future   •  More  realis$c  maps   •  Chiara,  Dario,  others   •  Database  of  maps  we  can  all  use   •  Simulate  sources  in  a  measurement  set   •  CLEAN  it,  generate  map   France  

Slide 9

Slide 9 text

Hancock  Maps   France   4800px 10000 sources

Slide 10

Slide 10 text

•  ASKAP  EMU  Source  Finder  Challenge   (simulated  maps)   •  Work  on  false  detec$on  rate/ parameters   •  Recode  Pyse  in  C++,  parallelize,  GPU   •  Follow  development  of  Aegean   •  PyBDSM  con$nually  being  improved   France   Future  

Slide 11

Slide 11 text