@tech_christine @ryanhos
What does your
Christine Seeman and Ryan Hochstetler
say about you?
Slide 2
Slide 2 text
@tech_christine @ryanhos
What is in an image?
Slide 3
Slide 3 text
@tech_christine @ryanhos
What is in an image?
Slide 4
Slide 4 text
@tech_christine @ryanhos
What do you focus on?
Slide 5
Slide 5 text
@tech_christine @ryanhos
What do you focus on?
Slide 6
Slide 6 text
@tech_christine @ryanhos
What is in it that you see?
Slide 7
Slide 7 text
@tech_christine @ryanhos
What is in it that you see?
Slide 8
Slide 8 text
@tech_christine @ryanhos
But what does an
application see in them?
Slide 9
Slide 9 text
@tech_christine @ryanhos
Meet Google Cloud
Vision
Slide 10
Slide 10 text
@tech_christine @ryanhos
Slide 11
Slide 11 text
@tech_christine @ryanhos
Slide 12
Slide 12 text
@tech_christine @ryanhos
Little bit different
vision
Slide 13
Slide 13 text
@tech_christine @ryanhos
Cloud Vision API
Landmarks
Face detection Image labeling
Optical character recognition
Explicit content detection
Logo detection
Web entities
Crop hint detection
Slide 14
Slide 14 text
@tech_christine @ryanhos
But how can we use it?
Slide 15
Slide 15 text
@tech_christine @ryanhos
Let's look at the client library
Slide 16
Slide 16 text
@tech_christine @ryanhos
Let's combine
accounts with
Slide 17
Slide 17 text
@tech_christine @ryanhos
Slide 18
Slide 18 text
@tech_christine @ryanhos
So that got us from this
Slide 19
Slide 19 text
@tech_christine @ryanhos
To this
Slide 20
Slide 20 text
@tech_christine @ryanhos
Aggregate the results into histograms
Labels
Landmarks
Logos
Slide 21
Slide 21 text
@tech_christine @ryanhos
Then finally the tag cloud
Slide 22
Slide 22 text
@tech_christine @ryanhos
Let's explore the
different detections
Slide 23
Slide 23 text
@tech_christine @ryanhos
Face detection
Slide 24
Slide 24 text
@tech_christine @ryanhos
What’s a “gnathion”?
Slide 25
Slide 25 text
@tech_christine @ryanhos
Sentiment Detection
Probably should be called “Sentiment Best Guestimation”
Slide 26
Slide 26 text
@tech_christine @ryanhos
Joy
Slide 27
Slide 27 text
@tech_christine @ryanhos
Surprise
Slide 28
Slide 28 text
@tech_christine @ryanhos
Anger?
Slide 29
Slide 29 text
@tech_christine @ryanhos
Sorrow?
Slide 30
Slide 30 text
@tech_christine @ryanhos
Image Composition
Slide 31
Slide 31 text
@tech_christine @ryanhos
Label detection
Slide 32
Slide 32 text
@tech_christine @ryanhos
@expertvagabond
Slide 33
Slide 33 text
@tech_christine @ryanhos
@expertvagabond
Slide 34
Slide 34 text
@tech_christine @ryanhos
@ripleyandrue
Slide 35
Slide 35 text
@tech_christine @ryanhos
@ripleyandrue
Slide 36
Slide 36 text
@tech_christine @ryanhos
Safe Search detection
Slide 37
Slide 37 text
@tech_christine @ryanhos
Yes it knows if it is a hotdog
Slide 38
Slide 38 text
@tech_christine @ryanhos
...and when it's not
Slide 39
Slide 39 text
@tech_christine @ryanhos
Seems accurate…
Slide 40
Slide 40 text
@tech_christine @ryanhos
Oh, there might be a bit of bias…
Slide 41
Slide 41 text
@tech_christine @ryanhos
Violence is difficult too…
Slide 42
Slide 42 text
@tech_christine @ryanhos
Racy but not violent?!?
Slide 43
Slide 43 text
@tech_christine @ryanhos
Doctored images are hit and miss
We chose not to include the image of a former US
president photoshopped to look like a dictator and
war criminal.
Google labeled it “Possibly” a spoof; i.e. altered to be
funny or offensive
Slide 44
Slide 44 text
@tech_christine @ryanhos
Text detection
Slide 45
Slide 45 text
@tech_christine @ryanhos
@letterfolk
Slide 46
Slide 46 text
@tech_christine @ryanhos
@letterfolk
MY
BRAIN
HAS
TO0
MANY
TABS
OPEN
Dechtlatte
THIS WEEK
pt de C
CAit s pg
Slide 47
Slide 47 text
@tech_christine @ryanhos
@letterfolk
Slide 48
Slide 48 text
@tech_christine @ryanhos
@letterfolk
YOURE NOT THE
BOSS OF ME..
IWHISPER UNDER
MY BREATH AS I
CLEAN UP ALL OF
MY CHILDREN'S
MESSES.
TRE
Slide 49
Slide 49 text
@tech_christine @ryanhos
@letterfolk
Slide 50
Slide 50 text
@tech_christine @ryanhos
@letterfolk
Seth
Elizabeth
Mat
IT'S BEGINNING TO
amazon Prime
LOOK A LOT LIKE...
vmazon Prime
echo
I GOT MY MONEY'S
WORTH FROM MY
1t\nare en
a ton Prime
AMAZON PRIME
MEMBERSHIP
Nany
echo
eciro
Slide 51
Slide 51 text
@tech_christine @ryanhos
Logo detection
Slide 52
Slide 52 text
@tech_christine @ryanhos
Slide 53
Slide 53 text
@tech_christine @ryanhos
@nike
Slide 54
Slide 54 text
@tech_christine @ryanhos
@nike
Slide 55
Slide 55 text
@tech_christine @ryanhos
@nike
1. nike
2. nike plus
3. nike azul
4. blue nike
5. nike store
Slide 56
Slide 56 text
@tech_christine @ryanhos
@christine_seeman
Slide 57
Slide 57 text
@tech_christine @ryanhos
@christine_seeman
Slide 58
Slide 58 text
@tech_christine @ryanhos
@christine_seeman
1. etelä suomen sanomat
2. rogue status
3. american horror story
4. delta skymiles
5. deník
!"!"
Slide 59
Slide 59 text
@tech_christine @ryanhos
Landmark detection
Slide 60
Slide 60 text
@tech_christine @ryanhos
@visit_nebraska
Slide 61
Slide 61 text
@tech_christine @ryanhos
@iloveny
Slide 62
Slide 62 text
@tech_christine @ryanhos
@iloveny
Slide 63
Slide 63 text
@tech_christine @ryanhos
@expertvagabond
Slide 64
Slide 64 text
@tech_christine @ryanhos
Have you been to London, NE?
Slide 65
Slide 65 text
@tech_christine @ryanhos
The British Museum there is lovely
Slide 66
Slide 66 text
@tech_christine @ryanhos
British Museum, alternate photo
Slide 67
Slide 67 text
@tech_christine @ryanhos
So much alike
Slide 68
Slide 68 text
@tech_christine @ryanhos
This wasn’t even a building…
Slide 69
Slide 69 text
@tech_christine @ryanhos
But what does my
instagram say about me?
Slide 70
Slide 70 text
@tech_christine @ryanhos
Slide 71
Slide 71 text
@tech_christine @ryanhos
@christineseeman
Slide 72
Slide 72 text
@tech_christine @ryanhos
Blooper cloud
Slide 73
Slide 73 text
@tech_christine @ryanhos
Cloud AutoML Vision
•Train ML models to classify
images
•Use your own defined labels.
•Graphical user interface to
train, evaluate, improve, and
deploy models
Slide 74
Slide 74 text
@tech_christine @ryanhos
@visit_nebraska
Slide 75
Slide 75 text
@tech_christine @ryanhos
Vs @visitcalifornia
Slide 76
Slide 76 text
@tech_christine @ryanhos
Vs @iloveny
Slide 77
Slide 77 text
@tech_christine @ryanhos
Sydney, Australia
Bangkok, Thailand
Paris, France
Slide 78
Slide 78 text
@tech_christine @ryanhos
Slide 79
Slide 79 text
@tech_christine @ryanhos
Evaluating Model Accuracy
@tech_christine @ryanhos
Where to go from here?
What to do next with Google Cloud Vision
Slide 86
Slide 86 text
@tech_christine @ryanhos
Explore bias in Machine
Learning?
Slide 87
Slide 87 text
@tech_christine @ryanhos
How much will this cost you?
For us, about $65
Slide 88
Slide 88 text
@tech_christine @ryanhos
905.33!
Slide 89
Slide 89 text
@tech_christine @ryanhos
$40 for the Training Compute Hours
Slide 90
Slide 90 text
@tech_christine @ryanhos
Technology Used
•Ruby (No Rails)
•Rspec
•Ruby Vision API Client Libraries
•Google Cloud Storage
•Rmagick (Ruby binding to Imagemagick)
•MagicCloud tag cloud gem
Slide 91
Slide 91 text
@tech_christine @ryanhos
All the code
https://github.com/hi-christine/cloud-vision-insta
@tech_christine @ryanhos
All the instagram accounts*
@ripleyandrue
@visit_nebraska
@wolffolins
@expertvagabond
@iloveny
@letterfolk
@myraswim
@visitcalifornia
@nationalportraitgallery
@nike
* and none were harmed in the making of this talk