Slide 25
Slide 25 text
Proposal: Three p-Laplacian on Directed Graphs
p-Laplacian
∆p
w
f (vi
) =
1
2
d∗
w
∇w
f(vi
) p−2
2
(dw
f )(vi , vj
) =
1
2
d∗
w
(dw
f )(vi , vj
)
∇w
f(vi
) 2−p
2
Putting all the ingredients in a general directed p-Laplacian
formulation
∆p,∗
w
f (vi
) =
1
2
f (vi
)
vj →vi
w(vj , vi
)2
φ(vj , vi
) ∇w
f(vj
) 2−p
2
+
vi →vj
w(vi , vj
)2
φ(vi , vj
) ∇w
f(vi
) 2−p
2
−
vj →vi
w(vj , vi
)2
γ1
(vj , vi
) ∇w
f(vj
) 2−p
2
f (vj
) +
vi →vj
w(vi , vj
)2
γ2
(vi , vj
) ∇w
f(vi
) 2−p
2
f (vj
)
where φ, γ1
and γ2
are defined as follows, depending on the chosen directed
p-Laplacian ∆p,∗
w
:
∆p
w
: φ(vi , vj
) = φ(vj , vi
) = γ1
(vj , vi
) = γ2
(vi , vj
) = 1,
˜
∆p
w
: φ(vi , vj
) = d− (vj
) d+ (vi
), φ(vj , vi
) = d− (vi
) d+ (vj
),
γ1
(vj , vi
) = d− (vi
) and γ2
(vi , vj
) = d+ (vi
),
∆p,rw
w
: φ(vi , vj
) = d+ (vj
), φ(vj , vi
) = d+ (vj
) and
γ1
(vj , vi
) = γ2
(vi , vj
) = d+ (vi
). 15 / 32