Slide 1

Slide 1 text

Confidence Modeling for 
 Neural Semantic Parsing จݙ঺հɹ ௕Ԭٕज़Պֶେֶɹࣗવݴޠॲཧݚڀࣨ ҴԬɹເਓ

Slide 2

Slide 2 text

Literature Confidence Modeling for Neural Semantic Parsing Li Dong† and Chris Quirk‡ and Mirella Lapata† †School of Informatics, University of Edinburgh
 ‡Microsoft Research, Redmond Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 743–753, 2018. !2

Slide 3

Slide 3 text

Abstract • Neural Semantic Parsing (seq2seq) ʹ͓͚Δ֬৴౓ϞσϦϯά • ೖྗͷͲ͕͜ෆ͔֬͞ͷཁҼʹͳ͍ͬͯΔ͔Λࣝผ • ࣄޙ֬཰ɺΞςϯγϣϯʹґଘ͢Δख๏ΑΓ΋༏ल !3

Slide 4

Slide 4 text

Introduction • Neural Semantic Parsing͸ظ଴Ͱ͖Δ݁ՌΛग़͢ҰํͰ
 ग़ྗͷݪҼ͕ղऍͮ͠Β͍ϒϥοΫϘοΫεͱͯ͠ಈ࡞ • Ϟσϧͷ༧ଌʹର͢Δ֬৴౓ͷਪఆʹΑͬͯ༗ҙٛͳ
 ϑΟʔυόοΫ͕ՄೳʹͳΔͷͰ͸ͳ͍͔ • ֬৴౓ͷείΞϦϯάख๏͸ࣄޙ֬཰ p(y|x) ͕Α͘࢖༻͞ΕΔ
 → ઢܗϞσϧͰ͸༗ޮ͕ͩχϡʔϥϧϞσϧͰ͸ྑ͘ͳ͍ !4

Slide 5

Slide 5 text

Neural Semantic Parsing • In: Natural Language
 Out: Logical form • Seq2seq with LSTM • Attention mechanism • Maximize the likelihood • Beam Search !5 !5

Slide 6

Slide 6 text

Confidence Estimation • ೖྗqͱ༧ଌͨ͠ҙຯදݱa͔Β֬৴౓s(q, a) ∈ (0, 1)Λ༧ଌ • ֬৴౓ͷ൑அʹ͸ʮԿΛ஌Βͳ͍͔ʯΛਪఆ͢Δඞཁ͕͋Δ • Ϟσϧͷෆ͔֬͞ɺσʔλͷෆ͔֬͞ɺೖྗͷෆ͔֬͞Λجʹ
 ࡞ΒΕΔࢦඪ͔Β֬৴౓ΛճؼϞσϧʹΑͬͯٻΊΔ !6

Slide 7

Slide 7 text

Model Uncertainty • Ϟσϧͷύϥϝʔλ΍ߏ଄ʹΑΔෆ͔֬͞Ͱ֬৴౓͕௿Լ
 ← ྫ͑͹܇࿅σʔλʹؚ·ΕΔϊΠζ΍֬཰తֶशΞϧΰϦζϜ • Dropout Perturbation, Gaussian Noise, Posterior Probability͔Β
 ࢦඪΛ࡞੒͠ɺෆ͔֬͞Λ༧ଌ !7

Slide 8

Slide 8 text

Dropout Perturbation • DropoutΛςετ࣌ʹ࢖༻
 (ਤதͷi, ii, iii, ivͷՕॴ) • จϨϕϧͰͷࢦඪɿ • τʔΫϯϨϕϧͰͷࢦඪɿ • ɹɹ͸ઁಈͤ͞Δύϥϝʔλɹ݁ՌΛूΊͯ෼ࢄΛܭࢉ !8

Slide 9

Slide 9 text

Gaussian Noise • Gaussian NoiseΛϕΫτϧ΁Ճ͑ͯDropoutͱಉ༷ʹ෼ࢄΛܭࢉ
 ← Dropout͸ϕϧψʔΠ෼෍ɺ͜Ε͸Ψ΢ε෼෍ʹै͏ϊΠζ • ϊΠζͷՃ͑ํ͸ҎԼͷ2ͭ (v͸ݩͷϕΫτϧ, g͸Gaussian Noise) !9

Slide 10

Slide 10 text

Posterior Probability • ࣄޙ֬཰ p(a | q)ΛจϨϕϧͰͷࢦඪʹ࢖༻ • τʔΫϯϨϕϧͰ͸ҎԼͷ2ͭΛࢦඪʹ࢖༻ • ɹɹɹɹɹɹɹɹɹɹɹɹɿ࠷΋ෆ͔֬ͳ୯ޠʹண໨ • ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɿτʔΫϯຖͷperplexity !10

Slide 11

Slide 11 text

Data Uncertainty • ܇࿅σʔλͷΧόϨοδ͸ෆ͔֬͞ʹӨڹΛ༩͑Δ • ܇࿅σʔλͰݴޠϞσϧΛֶशͤ͞ɺೖྗͷݴޠϞσϧ֬཰Λ
 ࢦඪʹ༻͍Δ • ೖྗͷະ஌ޠτʔΫϯ਺Λࢦඪʹ༻͍Δ !11

Slide 12

Slide 12 text

Input Uncertainty • Ϟσϧ͕׬ᘳͰ΋ೖྗ͕ᐆດͩͱෆ͔֬͞͸ൃੜ͢Δ
 (e.g. 9 o’clock -> flight_time(9am) or flight_time(9pm) ) • ্Ґީิͷ֬཰ͷ෼ࢄΛ༻͍Δ • ΤϯτϩϐʔΛ༻͍Δ
 ← a’͸αϯϓϦϯάۙࣅ !12

Slide 13

Slide 13 text

Confidence Storing • ͜ΕΒͷ༷ʑͳࢦඪΛ༻͍ͯ֬৴౓ͷείΞϦϯάΛߦ͏ • ޯ഑ϒʔεςΟϯάϞσϧʹ֤ࢦඪΛ༩ֶ͑ͯशͤ͞Δ
 ग़ྗ͕0ʙ1ʹͳΔΑ͏ϩδεςΟοΫؔ਺Ͱϥοϓ • ޯ഑ϒʔεςΟϯάϞσϧ͸ҎԼͷղઆهࣄ͕෼͔Γ΍͍͢
 (ʮGradient Boosting ͱ XGBoostʯ:
 ɹ https://zaburo-ch.github.io/post/xgboost/ ) !13

Slide 14

Slide 14 text

Uncertainty Interpretation • Ͳͷೖྗ͕ෆ͔֬͞ʹ࡞༻͍ͯ͠Δ͔Λಛఆ
 → ͦͷೖྗΛಛผͳέʔεͱͯ͠ѻ͏౳͕ग़དྷΔ • ༧ଌ͔ΒೖྗτʔΫϯؒ·ͰΛٯ఻ൖ
 → ֤τʔΫϯͷෆ͔֬͞΁ͷد༩͕Θ͔Δ !14

Slide 15

Slide 15 text

Experiments (Datasets) • IFTTT σʔληοτ (train-dev-test : 77,495 - 5,171 - 4,294) • DJANGO σʔληοτ (train-dev-test : 16,000 - 1,000 - 1,805)
 !15

Slide 16

Slide 16 text

Experiments (Settings) • Dropout Perturbation
 Dropout rate͸0.1ɺ30ճ࣮ߦͯ͠෼ࢄΛܭࢉ • Gaussian Noise
 ඪ४ภࠩΛ0.05ʹઃఆ • Probability of Input
 ݴޠϞσϧͱͯ͠KenLMΛ࢖༻ • Input Uncertainty
 10-best ͷީิ͔Β෼ࢄΛܭࢉ !16

Slide 17

Slide 17 text

Experiments (Results) • Model Uncertainty͕࠷΋ޮՌత • Data Uncertainty͸Өڹ͕খ͍͞
 → In-domainͰ͋ΔͨΊ !17

Slide 18

Slide 18 text

Experiments (Results) !18

Slide 19

Slide 19 text

Experiments (Results) • Model Uncertaintyͷ
 ࢦඪ͕ॏཁ • ಛʹIFTTT͸#UNKͱ
 Var͕ॏཁ !19

Slide 20

Slide 20 text

Experiments (Results) !20

Slide 21

Slide 21 text

Experiments (Results) • ϊΠζΛՃ͑ͨτʔΫϯྻͱ
 ٯ఻ൖͰಘͨτʔΫϯྻͷ
 ΦʔόʔϥοϓͰධՁ • Attentionͱൺֱͯ͠ߴ͍ • K=4ʹ͓͍ͯ͸໿80%͕Ұக !21

Slide 22

Slide 22 text

Experiments (Results) !22

Slide 23

Slide 23 text

Conclusions • Neural Semantic ParsingͷͨΊͷ֬৴౓ਪఆϞσϧΛఏࣔ • ෆ͔֬͞ΛೖྗτʔΫϯϨϕϧͰղऍ͢Δํ๏Λఏࣔ • IFTTT, DJANGOσʔληοτʹ͓͍ͯ༗ޮੑΛ֬ೝ • ఏҊϞσϧ͸Seq2seqΛ࠾༻͢Δ༷ʑͳλεΫͰద༻Մೳ • Neural Semantic ParsingͷActive Learningʹ͓͍ͯར༻Ͱ͖Δ !23