Slide 35
Slide 35 text
p = 0.5
sample_sizes = [10, 100, 1000, 10000, 100000]
replicates = 1000
biases = []
for n in sample_sizes:
bias = np.empty(replicates)
for i in range(replicates):
true_sample = np.random.normal(size=n)
negative_values = true_sample<0
missing = np.random.binomial(1, p, n).astype(bool)
observed_sample = true_sample[~(negative_values & missing)]
bias[i] = observed_sample.mean()
biases.append(bias)