Slide 1

Slide 1 text

関西大学総合情報学部 浅野 晃 画像情報処理 2024年度秋学期 第3部・CTスキャナ — 投影からの画像の 再構成 / 第10回 Radon変換と投影切断面定理

Slide 2

Slide 2 text

20 2 CTスキャナとは🤔🤔

Slide 3

Slide 3 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 CTスキャナとは 3 CT(computed tomography) = 計算断層撮影法 体の周囲からX線撮影を行い,そのデータから断面像を計算で求める (「わんパグ」http://kids.wanpug.com/illust234.html)

Slide 4

Slide 4 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 CTを実現するには 4 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s ある方向からX線を照射し, その方向での吸収率(投影)を調べる すべての方向からの投影がわかれば, 元の物体における吸収率分布がわかる

Slide 5

Slide 5 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s

Slide 6

Slide 6 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s X線が 入射

Slide 7

Slide 7 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s X線がある直線に沿って物体を通過するとき, 直線上の各点で吸収される X線が 入射

Slide 8

Slide 8 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s X線がある直線に沿って物体を通過するとき, 直線上の各点で吸収される 通過したX線の量は, 入射した量に吸収率の積分(線積分)を かけたものになっている X線が 入射

Slide 9

Slide 9 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s X線がある直線に沿って物体を通過するとき, 直線上の各点で吸収される 通過したX線の量は, 入射した量に吸収率の積分(線積分)を かけたものになっている X線が 入射

Slide 10

Slide 10 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s X線がある直線に沿って物体を通過するとき, 直線上の各点で吸収される 通過したX線の量は, 入射した量に吸収率の積分(線積分)を かけたものになっている X線が 入射

Slide 11

Slide 11 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影とは 5 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s X線がある直線に沿って物体を通過するとき, 直線上の各点で吸収される 通過したX線の量は, 入射した量に吸収率の積分(線積分)を かけたものになっている X線が 入射 投影=吸収率の線積分 直線上の吸収率の合計であって, どの点で吸収されたかはわからない

Slide 12

Slide 12 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は x y f(x, y)

Slide 13

Slide 13 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は その点を通るすべての投影(線積分)が わかれば求められる x y f(x, y)

Slide 14

Slide 14 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は その点を通るすべての投影(線積分)が わかれば求められる x y f(x, y)

Slide 15

Slide 15 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は その点を通るすべての投影(線積分)が わかれば求められる x y f(x, y)

Slide 16

Slide 16 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は その点を通るすべての投影(線積分)が わかれば求められる x y f(x, y)

Slide 17

Slide 17 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は その点を通るすべての投影(線積分)が わかれば求められる x y f(x, y)

Slide 18

Slide 18 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radonの示した定理 6 2次元関数の任意の点での値は その点を通るすべての投影(線積分)が わかれば求められる x y f(x, y) どうやって求めるかは,あとで説明します。

Slide 19

Slide 19 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 各方向からの投影のしかた 7

Slide 20

Slide 20 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 各方向からの投影のしかた 7 理論上はこんなふうに考える X線源 検出器 回転 回転 物体

Slide 21

Slide 21 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 各方向からの投影のしかた 7 理論上はこんなふうに考える X線源 検出器 回転 回転 物体 X線源 検出器 回転 回転 物体 実際はこのようにX線を当てる

Slide 22

Slide 22 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 各方向からの投影のしかた 7 理論上はこんなふうに考える X線源 検出器 回転 回転 物体 X線源 検出器 回転 回転 物体 実際はこのようにX線を当てる 物体の1点について考えれば,投影する順番が異なるだけで, 各方向の投影が得られるのは同じ

Slide 23

Slide 23 text

20 8 Radon変換とray-sum🤔🤔

Slide 24

Slide 24 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s

Slide 25

Slide 25 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s

Slide 26

Slide 26 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では

Slide 27

Slide 27 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ

Slide 28

Slide 28 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ つまり

Slide 29

Slide 29 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ x cos θ + y sin θ = 0 つまり

Slide 30

Slide 30 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ x cos θ + y sin θ = 0 つまり この線上だけを積分する

Slide 31

Slide 31 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ x cos θ + y sin θ = 0 つまり この線上だけを積分する →この式を満たす点だけを  積分する

Slide 32

Slide 32 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ x cos θ + y sin θ = 0 つまり この線上だけを積分する →この式を満たす点だけを  積分する ( ) g(0, θ) = ∞ −∞ f(x, y)δ(x cos θ + y sin θ)dxdy

Slide 33

Slide 33 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 9 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ x cos θ + y sin θ = 0 つまり この線上だけを積分する →この式を満たす点だけを  積分する ( ) g(0, θ) = ∞ −∞ f(x, y)δ(x cos θ + y sin θ)dxdy デルタ関数で表せる

Slide 34

Slide 34 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数δ(x) 10 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1 0 x こんなふうに表さざるを得ない 高さは,何だともいえない ∞ −∞ kδ(x)dx = k (「無限」でもない。なぜなら→

Slide 35

Slide 35 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 11 投影を2次元の積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では y x = tan(θ + π 2 ) = − cos θ sin θ x cos θ + y sin θ = 0 つまり この線上だけを積分する →この式を満たす点だけを   積分する ( ) g(0, θ) = ∞ −∞ f(x, y)δ(x cos θ + y sin θ)dxdy デルタ関数で表せる

Slide 36

Slide 36 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s

Slide 37

Slide 37 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 g(s,θ)は? x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s

Slide 38

Slide 38 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 g(s,θ)は? x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では

Slide 39

Slide 39 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 g(s,θ)は? x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では x cos θ + y sin θ − s = 0    

Slide 40

Slide 40 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 g(s,θ)は? x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では x cos θ + y sin θ − s = 0    

Slide 41

Slide 41 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 g(s,θ)は? x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では x cos θ + y sin θ − s = 0     g(s, θ) = ∞ −∞ f(x, y)δ(x cos θ + y sin θ − s)dxdy

Slide 42

Slide 42 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 Radon変換 12 g(s,θ)は? x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では Radon変換 x cos θ + y sin θ − s = 0     g(s, θ) = ∞ −∞ f(x, y)δ(x cos θ + y sin θ − s)dxdy

Slide 43

Slide 43 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s

Slide 44

Slide 44 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s (x, y) と (s, u) の関係は θ の回転

Slide 45

Slide 45 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s (x, y) と (s, u) の関係は θ の回転 s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u

Slide 46

Slide 46 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s (x, y) と (s, u) の関係は θ の回転 s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u (x, y) を (s, u) で表す

Slide 47

Slide 47 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s (x, y) と (s, u) の関係は θ の回転 s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u g(s, θ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ)du (x, y) を (s, u) で表す

Slide 48

Slide 48 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では s が一定で u が変化 (x, y) と (s, u) の関係は θ の回転 s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u g(s, θ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ)du (x, y) を (s, u) で表す

Slide 49

Slide 49 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ray-sum 13 投影を1次元の線積分で表す x y θ s 軸s g(s, θ) u 物体 投 影 0 g(0, θ) s この線上では s が一定で u が変化 ray-sum (x, y) と (s, u) の関係は θ の回転 s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u g(s, θ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ)du (x, y) を (s, u) で表す

Slide 50

Slide 50 text

20 14 投影切断面定理🤔🤔

Slide 51

Slide 51 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理 15 投影群から2次元関数を 再構成する fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 52

Slide 52 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理 15 投影群から2次元関数を 再構成する fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 53

Slide 53 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理 15 投影群から2次元関数を 再構成する fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 54

Slide 54 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理 15 投影群から2次元関数を 再構成する fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 55

Slide 55 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理 15 投影群から2次元関数を 再構成する fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 56

Slide 56 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理 15 投影群から2次元関数を 再構成する 「スライス」がすべてそろえば,2次元逆フーリエ変換で2次元関数が再構成できる fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 57

Slide 57 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 16 Gθ(ξ) = ∞ −∞ g(s, θ) exp(−i2πξs)ds fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 58

Slide 58 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 16 Gθ(ξ) = ∞ −∞ g(s, θ) exp(−i2πξs)ds fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 59

Slide 59 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 16 Gθ(ξ) = ∞ −∞ g(s, θ) exp(−i2πξs)ds g(s, θ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ)du ray-sum fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 60

Slide 60 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ)

Slide 61

Slide 61 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ)

Slide 62

Slide 62 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形

Slide 63

Slide 63 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形

Slide 64

Slide 64 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       と の関係 (x, y) (s, u) s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形

Slide 65

Slide 65 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       と の関係 (x, y) (s, u) s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形 に書き戻す x, y

Slide 66

Slide 66 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       と の関係 (x, y) (s, u) s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形 に書き戻す x, y

Slide 67

Slide 67 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       と の関係 (x, y) (s, u) s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形 に書き戻す x, y

Slide 68

Slide 68 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       と の関係 (x, y) (s, u) s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形 に書き戻す x, y これらを変数と考える

Slide 69

Slide 69 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 投影切断面定理の証明 17 Gθ(ξ) = ∞ −∞ f(s cos θ − u sin θ, s sin θ + u cos θ) × exp(−i2πξs)dsdu       と の関係 (x, y) (s, u) s u = cos θ sin θ − sin θ cos θ x y x y = cos θ − sin θ sin θ cos θ s u Gθ(ξ) = ∞ −∞ f(x, y) exp(−i2πξ(x cos θ + y sin θ))dxdy = ∞ −∞ f(x, y) exp(−i2π((ξ cos θ)x + (ξ sin θ)y))dxdy = F(ξ cos θ, ξ sin θ) dxdy = dsdu どちらも正方座標の小さな正方形 に書き戻す x, y これらを変数と考える 方向のスライス θ

Slide 70

Slide 70 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 71

Slide 71 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 72

Slide 72 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 73

Slide 73 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 74

Slide 74 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 75

Slide 75 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 76

Slide 76 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 77

Slide 77 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 78

Slide 78 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス 有限個の投影では,2次元フーリエ変換を埋め尽くすことはできない fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 79

Slide 79 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 18 2次元フーリエ変換の「すべてのスライス」を求めることはできない fx fy ひとつの投影=ひとつのスライス 有限個の投影では,2次元フーリエ変換を埋め尽くすことはできない →補間を行う fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 80

Slide 80 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 補間を行う。が,コンピュータで計算する限りは「離散的」 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 81

Slide 81 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 補間を行う。が,コンピュータで計算する限りは「離散的」 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 82

Slide 82 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy 補間を行う。が,コンピュータで計算する限りは「離散的」 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 83

Slide 83 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy スライスは極座標 補間を行う。が,コンピュータで計算する限りは「離散的」 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 84

Slide 84 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy スライスは極座標 補間を行う。が,コンピュータで計算する限りは「離散的」 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 85

Slide 85 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy スライスは極座標 補間を行う。が,コンピュータで計算する限りは「離散的」 2次元フーリエ変換は正方座標 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 86

Slide 86 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy スライスは極座標 補間を行う。が,コンピュータで計算する限りは「離散的」 2次元フーリエ変換は正方座標 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 87

Slide 87 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy スライスは極座標 周波数空間での誤差は,画像全体にひろがる アーティファクトを生む 補間を行う。が,コンピュータで計算する限りは「離散的」 2次元フーリエ変換は正方座標 fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換

Slide 88

Slide 88 text

19 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 フーリエ変換法による再構成の問題点 19 fx fy スライスは極座標 周波数空間での誤差は,画像全体にひろがる アーティファクトを生む 補間を行う。が,コンピュータで計算する限りは「離散的」 2次元フーリエ変換は正方座標 コンピュータの能力が低かった時代は精密な計算が難しかった →さてどうした? fx F(fx, fy) fy θ ξ スライス F(ξcosθ, ξsinθ) ξ Gθ(ξ) 等しい x y θ s s g(s, θ) u 物体 投 影 物体の2次元 フーリエ変換 投影の1次元 フーリエ変換