Slide 1

Slide 1 text

J. M. Skelton Department of Chemistry, University of Manchester ([email protected]) Theory-Led Control of Heat Transport in Thermoelectric Materials

Slide 2

Slide 2 text

The global energy challenge Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 2 Dr Jonathan M. Skelton 34 % 26 % 19 % 18 % 3 % 1000 MW nuclear power plant: o 650 MW waste heat o 3 % β‰ˆ 20 MW β‰ˆ 50,000 homes 300-500 W from exhaust gases: o 2 % lower fuel consumption o 2.4 Mt reduction in CO2 Thermoelectric generators allow waste heat to be recovered as electricity TEGs with ~3 % energy recovery (𝑍𝑇 = 1) are considered industrially viable 1. Provisional UK greenhouse gas emissions national statistics (published June 2020) 2. EPSRC Thermoelectric Network Roadmap (2018)

Slide 3

Slide 3 text

Thermoelectric materials Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 3 Dr Jonathan M. Skelton 𝑍𝑇 = 𝑆2𝜎 πœ…ele + πœ…lat 𝑇 𝑆 - Seebeck coefficient 𝜎 - electrical conductivity πœ…ele - electronic thermal conductivity πœ…lat - lattice thermal conductivity G. Tan et al., Chem. Rev. 116 (19), 12123 (2016)

Slide 4

Slide 4 text

Acknowledgements CMD29, 23rd August 2022 | Slide 4 Dr Jonathan M. Skelton ... plus mentors and collaborators too numerous to mention

Slide 5

Slide 5 text

Modelling thermal conductivity Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 5 Dr Jonathan M. Skelton A. Togo et al., Phys. Rev. B 91, 094306 (2015) 𝜿latt (𝑇) = 1 𝑁𝑉0 ෍ πœ† πœΏπœ† (𝑇) 1 𝑁𝑉0 ෍ πœ† πΆπœ† (𝑇)π’—πœ† βŠ— π’—πœ† πœπœ† (𝑇) The simplest model for πœ…latt is the single-mode relaxation time approximation (SM-RTA) - a closed solution to the phonon Boltzmann transport equations Modal heat capacity Mode group velocity πœ•πœ”Ξ» πœ•πͺ Average over phonon modes Ξ» Phonon MFP Mode lifetime 𝜏λ = 1 2Γλ πš²πœ† 𝑇 = π’—πœ† πœπœ† 𝑇

Slide 6

Slide 6 text

Modelling thermal conductivity Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 6 Dr Jonathan M. Skelton A. Togo et al., Phys. Rev. B 91, 094306 (2015) J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021) CoSb3

Slide 7

Slide 7 text

Modelling thermal conductivity Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 7 Dr Jonathan M. Skelton J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

Slide 8

Slide 8 text

Modelling thermal conductivity Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 8 Dr Jonathan M. Skelton A. Gold-Parker et al., PNAS 115 (47), 11905 (2018) GaAs MAPbI3

Slide 9

Slide 9 text

Modelling thermal conductivity Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 9 Dr Jonathan M. Skelton CoSb3 CoSb3 J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

Slide 10

Slide 10 text

Modelling thermal conductivity Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 10 Dr Jonathan M. Skelton CoSb3 CoSb3 J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

Slide 11

Slide 11 text

π’—πœ† vs. πœπœ† : the CRTA model Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 11 Dr Jonathan M. Skelton Consider again the SM-RTA model: 𝜿latt = 1 𝑁𝑉0 ෍ πœ† πœΏπœ† = 1 𝑁𝑉0 ෍ πœ† πΆπœ† π’—πœ† βŠ— π’—πœ† πœπœ† Replace the πœπœ† with a constant lifetime (relaxation time) 𝜏CRTA defined as follows: 𝜿latt 𝜏CRTA = 1 𝑁𝑉0 ෍ πœ† πœΏπœ† πœπœ† = 1 𝑁𝑉0 ෍ πœ† πΆπœ† π’—πœ† βŠ— π’—πœ† 𝜿latt β‰ˆ 1 𝑁𝑉0 ෍ πœ† πΆπœ† π’—πœ† βŠ— π’—πœ† Γ— 𝜏CRTA HA AH HA AH J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

Slide 12

Slide 12 text

π’—πœ† vs. πœπœ† : Si clathrates Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 12 Dr Jonathan M. Skelton B. Wei et al., in preparation

Slide 13

Slide 13 text

π’—πœ† vs. πœπœ† : Si clathrates Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 13 Dr Jonathan M. Skelton B. Wei et al., in preparation 𝜿latt β‰ˆ 1 𝑁𝑉0 ෍ πœ† πΆπœ† π’—πœ† βŠ— π’—πœ† Γ— 𝜏CRTA

Slide 14

Slide 14 text

π’—πœ† vs. πœπœ† : Si clathrates Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 14 Dr Jonathan M. Skelton 𝜿 (W m-1 K-1) Ξ€ 𝜿 𝝉𝐂𝐑𝐓𝐀 (W m-1 K-1 ps-1) 𝝉𝐂𝐑𝐓𝐀 (ps) d-Si 136.24 5.002 27.24 oC24 40.92 2.295 17.83 K-II / C-I 43.54 0.829 52.52 K-V / C-VI 36.29 0.815 44.53 K-VII / C-V 31.16 0.770 40.45 C-II 6.33 0.458 13.81 Spacegroup π’πš 𝐹𝑑ഀ 3π‘š 2 πΆπ‘šπ‘π‘š 12 π‘ƒπ‘šΰ΄€ 3π‘š 46 πΆπ‘šπ‘šπ‘š 40 𝑃63 /π‘šπ‘šπ‘ 68 𝐹𝑑ഀ 3π‘š 34 With the exception of the Clathrate-II structure, the harmonic Ξ€ 𝜿 𝜏CRTA term correlates with: (1) the size of the primitive cell (𝑛a ); and (2) the spacegroup (crystal symmetry) Implies low group velocities are favoured by complex structures with large primitive cells and/or low symmetry B. Wei et al., in preparation

Slide 15

Slide 15 text

Analysing πœπœ† : phonon linewidths Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 15 Dr Jonathan M. Skelton Ξ“πœ† (𝑇) = ෍ πœ†β€²πœ†β€²β€² Ξ¦βˆ’πœ†πœ†β€²πœ†β€²β€² 2 Γ— { π‘›πœ†β€² (𝑇) βˆ’ π‘›πœ†β€²β€² (𝑇) 𝛿 πœ” + πœ”πœ†β€² βˆ’ πœ”πœ†β€²β€² βˆ’ 𝛿 πœ” βˆ’ πœ”πœ†β€² + πœ”πœ†β€²β€² + π‘›πœ†β€² (𝑇) + π‘›πœ†β€²β€² (𝑇) + 1 𝛿 πœ” βˆ’ πœ”πœ†β€² βˆ’ πœ”πœ†β€²β€² } Collision Decay Three-phonon interaction strength - includes conservation of momentum(β€œanharmonicity”) Conservation of energy (β€œselection rules”) A. Togo et al., Phys. Rev. B 91, 094306 (2015)

Slide 16

Slide 16 text

Analysing πœπœ† : phonon linewidths Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 16 Dr Jonathan M. Skelton A. Togo et al., Phys. Rev. B 91, 094306 (2015) Approximate expression for Ξ“πœ† : With: Ξ“πœ† (𝑇) β‰ˆ 18πœ‹ ℏ2 ΰ·¨ 𝑃𝑁2 (π’’πœ† , πœ”πœ† , 𝑇) 𝑁2 π’’πœ† , πœ”πœ† , 𝑇 = 𝑁 2 (1) π’’πœ† , πœ”πœ† , 𝑇 + 𝑁 2 (2) π’’πœ† , πœ”πœ† , 𝑇 𝑁 2 (1) π’’πœ† , πœ”πœ† , 𝑇 = 1 𝑁 ෍ πœ†β€²πœ†β€²β€² βˆ†(βˆ’π’’πœ† + π’’πœ†β€² + π’’πœ†β€²β€² ) π‘›πœ†β€² (𝑇) βˆ’ π‘›πœ†β€²β€² (𝑇) Γ— 𝛿 πœ” + πœ”πœ†β€² βˆ’ πœ”πœ†β€²β€² βˆ’ 𝛿 πœ” βˆ’ πœ”πœ†β€² + πœ”πœ†β€²β€² 𝑁 2 (2) π’’πœ† , πœ”πœ† , 𝑇 = 1 𝑁 ෍ πœ†β€²πœ†β€²β€² βˆ†(βˆ’π’’πœ† + π’’πœ†β€² + π’’πœ†β€²β€² ) π‘›πœ†β€² (𝑇) + π‘›πœ†β€²β€² (𝑇) + 1 𝛿 πœ” βˆ’ πœ”πœ†β€² βˆ’ πœ”πœ†β€²β€²

Slide 17

Slide 17 text

Analysing πœπœ† Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 17 Dr Jonathan M. Skelton B. Wei et al., in preparation Ξ“πœ† (𝑇) β‰ˆ 18πœ‹ ℏ2 ΰ·¨ 𝑃𝑁2 (π’’πœ† , πœ”πœ† , 𝑇)

Slide 18

Slide 18 text

Workflow Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 18 Dr Jonathan M. Skelton 𝜿latt (𝑇) Ξ€ 𝜿 𝜏CRTA 𝜏CRTA ΰ΄₯ 𝑁2 ΰ·¨ 𝑃 Phonopy + Phono3py A. Togo and I. Tanka, Scr. Mater. 108, 1 (2015) A. Togo et al., Phys. Rev. B 91, 094306 (2015)

Slide 19

Slide 19 text

π’—πœ† vs. πœπœ† : other TEs Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 19 Dr Jonathan M. Skelton πœ… [W m-1 K-1] Ξ€ πœ… 𝝉𝐂𝐑𝐓𝐀 [W m-1 K-1 ps-1] 𝝉𝐂𝐑𝐓𝐀 [ps] Si 136.24 5.002 27.2 SnS 2.15 0.718 3.00 SnSe 1.58 0.372 4.23 CoSb3 9.98 0.273 36.6 Bi2 S3 (Pnma) 0.90 0.423 2.14 Bi2 Se3 (R-3m) 1.82 0.293 6.20 Bi2 Te3 (R-3m) 0.87 0.199 4.41 J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021) J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021) J. Cen, I. Pallikara and J. M. Skelton, Chem. Mater. 33 (21), 8404 (2021) B. Wei et al., in preparation

Slide 20

Slide 20 text

Reducing π’—πœ† I: alloying Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 20 Dr Jonathan M. Skelton C.-C. Lin et al., Chem. Mater. 29 (12), 5344 (2017) SnSe 15-20 % S

Slide 21

Slide 21 text

Reducing π’—πœ† I: alloying Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 21 Dr Jonathan M. Skelton 54.2 % ↓ Sn(S0.1875 Se0.8125 ) SnSe J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)

Slide 22

Slide 22 text

Reducing π’—πœ† II: discordant doping Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 22 Dr Jonathan M. Skelton H. Xie et al., J. Am. Chem. Soc. 141 (47), 18900 (2019)

Slide 23

Slide 23 text

Reducing πœπœ† I: β€œrattler” TEs Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 23 Dr Jonathan M. Skelton Schwartz and Walker, Phys. Rev. B 155, 959 (1967) E. S. Toberer et al., J. Mater. Chem. 21, 15843 (2011) J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021) β€œOne phonon” model for resonant scattering: πœβˆ’1 = ෍ 𝑖 𝑐𝑖 πœ”2𝑇2 πœ”π‘– 2 βˆ’ πœ”2 2 + 𝛾𝑖 πœ”π‘– 2πœ”2

Slide 24

Slide 24 text

Reducing πœπœ† II: hybrid TEs (?) Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 24 Dr Jonathan M. Skelton A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)

Slide 25

Slide 25 text

Workflow Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 25 Dr Jonathan M. Skelton 𝜿latt (𝑇) Ξ€ 𝜿 𝜏CRTA 𝜏CRTA ΰ΄₯ 𝑁2 ΰ·¨ 𝑃 𝑺(𝑛, 𝑇) 𝝈(𝑛, 𝑇) 𝜿el (𝑛, 𝑇) Phonopy + Phono3py AMSET 𝑍𝑇(𝑛, 𝑇) A. Togo and I. Tanka, Scr. Mater. 108, 1 (2015) A. Togo et al., Phys. Rev. B 91, 094306 (2015) A. M. Ganose et al., Nature Comm. 12, 2222 (2021)

Slide 26

Slide 26 text

Predicting 𝒁𝑻 Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 26 Dr Jonathan M. Skelton J. M. Flitcroft et al., Solids 3 (1), 155 (2022)

Slide 27

Slide 27 text

Challenges and opportunities Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 27 Dr Jonathan M. Skelton D. W. Davies et al., Chem 1 (4), 617 (2016)

Slide 28

Slide 28 text

Challenges and opportunities Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 28 Dr Jonathan M. Skelton W. Rahim et al., J. Mater. Chem. A 8, 16405 (2020) W. Rahim et al., J. Mater. Chem. A 9, 20417 (2021) K. Brlec et al., J. Mater. Chem. A 10, 16813 (2022) 𝛼-Bi2 Sn2 O7 𝑛 = 1.73 Γ— 1019 cm-3 𝑍𝑇 = 0.36 (385 K) Ca4 Sb2 O / Ca4 Bi2 O 𝑝 = 4.64 / 2.15 Γ— 1019 cm-3 𝑍𝑇 = 1.58 / 2.14 (1000 K) Y2 Ti2 O5 S2 𝑛 = 2.37 Γ— 1020 cm-3 𝑍𝑇 = 1.18 (1000 K)

Slide 29

Slide 29 text

Challenges and opportunities Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 29 Dr Jonathan M. Skelton

Slide 30

Slide 30 text

Challenges and opportunities Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 30 Dr Jonathan M. Skelton Some questions to consider (definitely not exhaustive...): 1. Is there a β€œkiller” application of TEs that we should target? 2. If so, what are the parameters? β€’ Operating temperature and target 𝑍𝑇? β€’ Target cost per device? β€’ Constraints on elemental composition? β€’ Constraints on synthesis/device fabrication for scale up? 3. How can theory and experiment best work together? β€’ Is modelling in a position to provide actionable suggestions to improve 𝑍𝑇? β€’ Would it be possible(/useful) to use modelling to screen candidates to narrow the focus of experiments? β€’ Are existing theoretical techniques sufficient, or is more development needed (e.g. faster, cheaper, easier to use, capability to model new things ...)?

Slide 31

Slide 31 text

https://bit.ly/3AjphfB These slides are available on Speaker Deck: