Slide 1

Slide 1 text

Content vs SERPs The Intent and Sentiment Analysis By Rad Paluszak

Slide 2

Slide 2 text

Rad Paluszak: Content vs SERPs The Search Initiative • Introduction • Intent and Sentiment in Google • Google Patents • RankBrain • Natural Language Processing • Search Quality Rater Guidelines • Sentiment in SERPs • User Intent • Classification • Discovery • Latent Intent • Summary Contents I N T R O D U C T I O N

Slide 3

Slide 3 text

Rad Paluszak: Content vs SERPs The Search Initiative Rad Paluszak • “SEO” birthday - 2010 (Caffeine update) • Web developer “at heart” • Algorithms <3 • Machine Learning <3 • Data Mining <3 • “Technical SEO Artist” @radpaluszak 📧 [email protected] D I R E C T O R O F S E O

Slide 4

Slide 4 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent and Sentiment Why Do We Care About Intent and Sentiment?

Slide 5

Slide 5 text

Rad Paluszak: Content vs SERPs The Search Initiative Patents • Matching of user profiles with audience segments https://patents.google.com/patent/US9706008 • Determining user intent from query patterns https://patents.google.com/patent/US8868548 • User intent analysis engine https://patents.google.com/patent/US20120136714A1/en • Search Engine Using User Intent https://patents.google.com/patent/US20060064411A1/en • Clustering query refinements by inferred user intent https://patents.google.com/patent/US9582766B2/en • User models for implicit intents in search https://patents.google.com/patent/US20150012532A1/en • https://patents.google.com/patent/US20170076357 • https://patents.google.com/patent/US20150348109A1/en • http://www.freepatentsonline.com/y2017/0083821.html • https://patents.google.com/patent/US20160117704A1/en • https://patents.google.com/patent/US20140074859 • https://patents.google.com/patent/US8868548B2/en Resources • https://searchengineland.com/patent-1-2-google-learns- influence-control-users-272358 • http://www.seobythesea.com/2012/12/navigational- queries-resources/ • https://www.slideshare.net/russdan/googles-ai-is-smarter- than-you-what-does-that-mean-for-google-ads-and-seo • https://searchengineland.com/googles-new-custom-intent- audiences-287556 • https://www.kevin-indig.com/user-intent-mapping-steroids/ • https://www.stateofdigital.com/optimise-for-searcher- intent-complete-guide-2019/ • https://moz.com/blog/using-stat-for-content-strategy • https://raynernomics.com/predict-keyword-latent-intent/ • https://www.jimmydaly.com/hub-and-spoke/ • https://raynernomics.com/become-everyones-trendsetter/ • https://www.contentharmony.com/blog/classifying-search- intent/ • https://ahrefs.com/blog/search-intent/

Slide 6

Slide 6 text

Rad Paluszak: Content vs SERPs The Search Initiative Thank You! ;)

Slide 7

Slide 7 text

Rad Paluszak: Content vs SERPs The Search Initiative Why do we care about Intent and Sentiment? • Rank Brain • Google’s Patents • Natural Language Processing

Slide 8

Slide 8 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent and Sentiment Google Patents

Slide 9

Slide 9 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Predicted travel intent Google observes your behavior and learns, then predicts whether you plan to travel. • Commute • Vacation • Short Stays • Local “gems”

Slide 10

Slide 10 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Predicted travel intent Google observes your behavior and learns, then predicts whether you plan to travel. • Commute • Vacation • Short Stays • Local “gems” Google Is Spying on You!

Slide 11

Slide 11 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Predicted travel intent Google observes your behavior and learns, then predicts whether you plan to travel. • Commute • Vacation • Short Stays • Local “gems” Tell Me Something I Don’t Know!

Slide 12

Slide 12 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Determining user intent from query patterns Google adjusts the search results returned based on a set of queries through finding patterns that suggest what the user intent is.

Slide 13

Slide 13 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Determining user intent from query patterns Google adjusts the search results returned based on a set of queries through finding patterns that suggest what the user intent is. We can also see that the Search Engine System consists of a few agents: • Indexing Engine • Ranking Engine • Rank Modifier Engine • Intent Identifier

Slide 14

Slide 14 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Clustering query refinements by inferred user intent Google builds a query representation in a form of graph.

Slide 15

Slide 15 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Clustering query refinements by inferred user intent Google builds a query representation in a form of graph. Based on the refinements that become subsequent nodes, Google creates „Related Searches”.

Slide 16

Slide 16 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Clustering query refinements by inferred user intent Google builds a query representation in a form of graph. Based on the refinements that become subsequent nodes, Google creates „Related Searches”. Again, a few agents mentioned in this patent: • Indexing Engine • Ranking Engine • Search Suggestion Engine

Slide 17

Slide 17 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Matching of user profiles with audience segments Embodiments of the present teachings disclose method, system, and programs that monetize personalized user behavioural profiles by remapping the users to audience segments related to advertisement. In the method, the users can be targeted with advertisements that are personalized and hence are more likely to lead to conversions.

Slide 18

Slide 18 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Matching of user profiles with audience segments Embodiments of the present teachings disclose method, system, and programs that monetize personalized user behavioural profiles by remapping the users to audience segments related to advertisement. In the method, the users can be targeted with advertisements that are personalized and hence are more likely to lead to conversions.

Slide 19

Slide 19 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Matching of user profiles with audience segments Embodiments of the present teachings disclose method, system, and programs that monetize personalized user behavioural profiles by remapping the users to audience segments related to advertisement. In the method, the users can be targeted with advertisements that are personalized and hence are more likely to lead to conversions.

Slide 20

Slide 20 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t Matching of user profiles with audience segments Embodiments of the present teachings disclose method, system, and programs that monetize personalized user behavioural profiles by remapping the users to audience segments related to advertisement. In the method, the users can be targeted with advertisements that are personalized and hence are more likely to lead to conversions.

Slide 21

Slide 21 text

Rad Paluszak: Content vs SERPs The Search Initiative Google Patents I n t e n t a n d S e n t i m e n t

Slide 22

Slide 22 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent and Sentiment RankBrain and SERPs

Slide 23

Slide 23 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain is an artificial intelligence system, the use of which was confirmed by Google on 26 October 2015. It helps Google to process search results and provide more relevant search results for users. If Rank Brain sees a word or phrase it isn’t familiar with, the machine can make a guess as to what words or phrases might have a similar meaning and filter the results accordingly, making it more effective at handling never- before-seen search queries or keywords. Rank Brain I n t e n t a n d S e n t i m e n t

Slide 24

Slide 24 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo

Slide 25

Slide 25 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t Results Post process ing Relevance Matching Intent Analysis NLP Query Parsing User Query Results Satisfaction Analysis (CTR, BR)

Slide 26

Slide 26 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page

Slide 27

Slide 27 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page

Slide 28

Slide 28 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page

Slide 29

Slide 29 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page

Slide 30

Slide 30 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page

Slide 31

Slide 31 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page

Slide 32

Slide 32 text

Rad Paluszak: Content vs SERPs The Search Initiative Rank Brain in Search Results I n t e n t a n d S e n t i m e n t https://backlinko.com/google-rankbrain-seo User Query Concept Results for The Concept Is User Satisfied? No Try Another Page Next Time Yes Uprank That Page CTR … ?

Slide 33

Slide 33 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent + CTR I n t e n t a n d S e n t i m e n t https://cdn-backlinko.pressidium.com/wp-content/uploads/2018/04/organic-seo-ctr-infographic.png

Slide 34

Slide 34 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent + CTR I n t e n t a n d S e n t i m e n t https://cdn-backlinko.pressidium.com/wp-content/uploads/2018/04/organic-seo-ctr-infographic.png

Slide 35

Slide 35 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent + CTR I n t e n t a n d S e n t i m e n t Intent + CTR = $ $ $ https://cdn-backlinko.pressidium.com/wp-content/uploads/2018/04/organic-seo-ctr-infographic.png

Slide 36

Slide 36 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent + CTR I n t e n t a n d S e n t i m e n t

Slide 37

Slide 37 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent and Sentiment Natural Language Processing

Slide 38

Slide 38 text

Rad Paluszak: Content vs SERPs The Search Initiative Natural Language Processing Machine Translation Information Retrieval Sentiment Analysis Information Extraction Questions & Answers Intent Discovery Natural Language Processing I n t e n t a n d S e n t i m e n t

Slide 39

Slide 39 text

Natural Language Processing I n t e n t a n d S e n t i m e n t

Slide 40

Slide 40 text

Natural Language Processing I n t e n t a n d S e n t i m e n t

Slide 41

Slide 41 text

Natural Language Processing I n t e n t a n d S e n t i m e n t

Slide 42

Slide 42 text

Natural Language Processing I n t e n t a n d S e n t i m e n t

Slide 43

Slide 43 text

Rad Paluszak: Content vs SERPs The Search Initiative Neural Matching N a t u r a l L a n g u a g e P r o c e s s i n g Neural matching is an artificial intelligence based system that Google began using in 2018 primarily to understand how words are related to concepts. It is kind of “like a super-synonym system”. Neural matching helps them better relate words to searches. • RankBrain helps Google better relate pages to concepts. • Neural matching helps Google better relate words to searches.

Slide 44

Slide 44 text

Rad Paluszak: Content vs SERPs The Search Initiative Neural Matching N a t u r a l L a n g u a g e P r o c e s s i n g For example, neural matching helps Google understand that a search for "why does my TV look strange" is related to the concept of "the soap opera effect." The algorithm can then return pages about the soap opera effect, even if the exact words aren't used. • RankBrain helps Google better relate pages to concepts. • Neural matching helps Google better relate words to searches.

Slide 45

Slide 45 text

Rad Paluszak: Content vs SERPs The Search Initiative Neural Matching N a t u r a l L a n g u a g e P r o c e s s i n g

Slide 46

Slide 46 text

Rad Paluszak: Content vs SERPs The Search Initiative Neural Matching N a t u r a l L a n g u a g e P r o c e s s i n g

Slide 47

Slide 47 text

Rad Paluszak: Content vs SERPs The Search Initiative Neural Matching N a t u r a l L a n g u a g e P r o c e s s i n g Google doesn't care about a person. It cares about people.

Slide 48

Slide 48 text

Rad Paluszak: Content vs SERPs The Search Initiative BERT N a t u r a l L a n g u a g e P r o c e s s i n g BERT is Google’s neural network-based technique for natural language processing (NLP) pre-training. BERT stands for Bidirectional Encoder Representations from Transformers. It was opened-sourced last year and written about in more detail on the Google AI blog. In short, BERT can help computers understand language a bit more like humans do. Google said BERT helps better understand the nuances and context of words in searches and better match those queries with more relevant results. It is also used for featured snippets.

Slide 49

Slide 49 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent and Sentiment Google Search Quality Evaluator Guidelines

Slide 50

Slide 50 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines I n t e n t a n d S e n t i m e n t

Slide 51

Slide 51 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines - KNOW I n t e n t a n d S e n t i m e n t

Slide 52

Slide 52 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – DO I n t e n t a n d S e n t i m e n t

Slide 53

Slide 53 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – DEVICE I n t e n t a n d S e n t i m e n t

Slide 54

Slide 54 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – NOT DEVICE I n t e n t a n d S e n t i m e n t

Slide 55

Slide 55 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – WEBSITE I n t e n t a n d S e n t i m e n t

Slide 56

Slide 56 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 57

Slide 57 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 58

Slide 58 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 59

Slide 59 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 60

Slide 60 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 61

Slide 61 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 62

Slide 62 text

Rad Paluszak: Content vs SERPs The Search Initiative Search Quality Evaluator Guidelines – VISIT IN PERSON I n t e n t a n d S e n t i m e n t

Slide 63

Slide 63 text

Rad Paluszak: Content vs SERPs The Search Initiative User Sentiment Sentiment in SERPs

Slide 64

Slide 64 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers There are currently 4 results on the first page that clearly indicate negative sentiment. But it wasn’t always the case!

Slide 65

Slide 65 text

Rad Paluszak: Content vs SERPs The Search Initiative January 2019 October 2019

Slide 66

Slide 66 text

Rad Paluszak: Content vs SERPs The Search Initiative January 2019 October 2019

Slide 67

Slide 67 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers

Slide 68

Slide 68 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s

Slide 69

Slide 69 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers • There are 6 positions to aim ranking at with positive sentiment.

Slide 70

Slide 70 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers • There are 6 positions to aim ranking at with positive sentiment. • There are 4 positions to aim ranking at with negative sentiment.

Slide 71

Slide 71 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers • There are 6 positions to aim ranking at with positive sentiment. • There are 4 positions to aim ranking at with negative sentiment. • Google tries to diversify the results by ranking pages showing different sentiment.

Slide 72

Slide 72 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers • There are 6 positions to aim ranking at with positive sentiment. • There are 4 positions to aim ranking at with negative sentiment. • Google tries to diversify the results by ranking pages showing different sentiment. • Google WILL TEST the CTR and other signals around the diversification.

Slide 73

Slide 73 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s Buy Instagram Followers • There are 6 positions to aim ranking at with positive sentiment. • There are 4 positions to aim ranking at with negative sentiment. • Google tries to diversify the results by ranking pages showing different sentiment. • Google WILL TEST the CTR and other signals around the diversification. • Rank … ekhm … Brain … ekhm … or something … ekhm … Adaptive Algo

Slide 74

Slide 74 text

Rad Paluszak: Content vs SERPs The Search Initiative Sentiment in Search Results S e n t i m e n t i n S E R P s TSLA (Tesla) 1st page results are influenced by the current sentiment towards the brand. The overall sentiment related to entity might also influence how Google perceives the user interests and can potentially reshuffle the search results.

Slide 75

Slide 75 text

Rad Paluszak: Content vs SERPs The Search Initiative September 2018 October 2019

Slide 76

Slide 76 text

Rad Paluszak: Content vs SERPs The Search Initiative October 2019 September 2018

Slide 77

Slide 77 text

Rad Paluszak: Content vs SERPs The Search Initiative It Is NOT Google Who Rank Your Site! It’s Your Competitors Who Rank Your Site! Ted Kubaitis & Rad Paluszak – Chiang Mai SEO 2018

Slide 78

Slide 78 text

Rad Paluszak: Content vs SERPs The Search Initiative User Intent Intent Classification

Slide 79

Slide 79 text

Rad Paluszak: Content vs SERPs The Search Initiative Intent Classification U s e r I n t e n t KNOW DO WEBSITE VISIT KNOW The goal is to find an answer to a question. DO The goal is to download, to buy, to obtain or to be entertained. WEBSITE The goal is to find a specific site or Page. VISIT The goal is to visit-in-person a business or organisation.

Slide 80

Slide 80 text

Rad Paluszak: Content vs SERPs The Search Initiative Know, Do, Website, Visit Classification is . Too Broad

Slide 81

Slide 81 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (1/9): Research U s e r I n t e n t People also ask Featured snippet/Steps List

Slide 82

Slide 82 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (2/9): Answer U s e r I n t e n t Instant Answer / in-SERP calculators

Slide 83

Slide 83 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (2/9): Answer U s e r I n t e n t

Slide 84

Slide 84 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (3/9): Transactional U s e r I n t e n t Ads Google shopping results

Slide 85

Slide 85 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (4/9): Local U s e r I n t e n t Map Pack

Slide 86

Slide 86 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (5/9): Visual U s e r I n t e n t Image Pack

Slide 87

Slide 87 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (6/9): Video U s e r I n t e n t

Slide 88

Slide 88 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (7/9): Fresh/News U s e r I n t e n t Top Stories

Slide 89

Slide 89 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (8/9): Branded U s e r I n t e n t Large Site Links Often Only 7 Results on Page 1 One Site (Brand) Owns The Entire Page 1

Slide 90

Slide 90 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (9/9): Mixed U s e r I n t e n t

Slide 91

Slide 91 text

Rad Paluszak: Content vs SERPs The Search Initiative Classification (9/9): Mixed U s e r I n t e n t

Slide 92

Slide 92 text

Rad Paluszak: Content vs SERPs The Search Initiative User Intent (Kane Jamison – Content Harmony) U s e r I n t e n t ClassificationSummary SERP Features Research Searcher looking for more information Featured snippet, People also ask, Knowledge carousels Answer Searcher looking for a quick answer Scorecards, in-SERP calculators Transaction Searcher looking to buy a product Google shopping results Local Searcher looking for a local answer Map pack, map in knowledge panel Visual Searcher looking for visual inspiration Image pack Video Searcher looking for video content Video pack, video thumbnails Fresh/News Searcher looking for the latest news Top Stories in the SERP, Recent tweets Branded Searcher looking for a specific brand Large sitelinks, one site owning page 1 Mixed Searcher may have a number of ‘intents’Mix of the above in one SERP https://www.contentharmony.com/blog/classifying-search-intent/

Slide 93

Slide 93 text

Rad Paluszak: Content vs SERPs The Search Initiative U s e r I n t e n t

Slide 94

Slide 94 text

Rad Paluszak: Content vs SERPs The Search Initiative SERP analysis shows predicted user intent U s e r I n t e n t • 9 out of 10 results are Research Intent • There are no strictly transactional results • Do you stand a chance to rank a transactional page?

Slide 95

Slide 95 text

Rad Paluszak: Content vs SERPs The Search Initiative SERP analysis shows predicted user intent U s e r I n t e n t • 9 out of 10 results are Research Intent • There are no strictly transactional results • Do you stand a chance to rank a transactional page?

Slide 96

Slide 96 text

Rad Paluszak: Content vs SERPs The Search Initiative https://www.workspace.co.uk/co-working

Slide 97

Slide 97 text

Rad Paluszak: Content vs SERPs The Search Initiative U s e r I n t e n t

Slide 98

Slide 98 text

Rad Paluszak: Content vs SERPs The Search Initiative • 9 out of 11* (Maps Included) Transactional Intent • This is where we should target transactional page SERP analysis shows preferred user intent U s e r I n t e n t

Slide 99

Slide 99 text

Rad Paluszak: Content vs SERPs The Search Initiative • 9 out of 11* (Maps Included) Transactional Intent • This is where we should target transactional page SERP analysis shows preferred user intent U s e r I n t e n t

Slide 100

Slide 100 text

Rad Paluszak: Content vs SERPs The Search Initiative https://www.workspace.co.uk/type-of-space/office-space

Slide 101

Slide 101 text

Rad Paluszak: Content vs SERPs The Search Initiative What’s it got to do with what I do? 1. Every search has some intent behind it. 2. Google tries to predict and adjust the results to the user intent. Intent in Google’s world is the relevance. 3. Optimising for the dominant user intent gives you a better chance to rank. 4. Better intent satisfaction will influence the CTR, engagement and conversions. $$$ - remember? U s e r I n t e n t

Slide 102

Slide 102 text

Rad Paluszak: Content vs SERPs The Search Initiative User Intent Intent Discovery

Slide 103

Slide 103 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 1: SERP features analysis U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 104

Slide 104 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 1: SERP features analysis U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 105

Slide 105 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 2: People Also Ask Analysis U s e r I n t e n t • Contents of “People also ask” can suggest the predicted user intent. • It’s more difficult than just finding the “action” words (rent, offer, etc). • Do not ever scrape FAQ schema ;)

Slide 106

Slide 106 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 2: People Also Ask Analysis U s e r I n t e n t • Contents of “People also ask” can suggest the predicted user intent. • It’s more difficult than just finding the “action” words (rent, offer, etc). • Do not ever scrape FAQ schema ;) Transactional Research

Slide 107

Slide 107 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 2: People Also Ask Analysis U s e r I n t e n t https://www.searchenginejournal.com/automated-intent-classification-using-deep-learning/311309/

Slide 108

Slide 108 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t • Create your own custom search engine at cse.google.com • Pull 100 results from your intended query (or your main competitors) • Add them to CSE https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 109

Slide 109 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 110

Slide 110 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 111

Slide 111 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 112

Slide 112 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 113

Slide 113 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results 10 Affiliate SEO Course

Slide 114

Slide 114 text

No content

Slide 115

Slide 115 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results 10 12

Slide 116

Slide 116 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 3: Google Custom Search Engine (CSE) U s e r I n t e n t What’s different between CSE and a live SERP? • Your page ranks higher in Custom Search Engine and lower than Live = There’s a technical onsite issue or weak authority! • Your page ranks lower in CSE and higher in Live = Poor Relevance/Topicality. • CSE can also reveal words/terms that suggest the predicted search intent. • CSE has API! https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 117

Slide 117 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 4: Scrape SERPs U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 118

Slide 118 text

Rad Paluszak: Content vs SERPs The Search Initiative https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 119

Slide 119 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 4: Scrape SERPs U s e r I n t e n t https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 120

Slide 120 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 4: Scrape SERPs U s e r I n t e n t Element XPath URL //*[@class="r"]/a Page Title //*[@class="r"]/a/h3 Meta Description //*[@class="s"]/div/span https://www.slideshare.net/SearchLeeds/searchleeds-2019-rory-truesdale-intent-optimisation-why-it-matters-and-how-it-can-improve-your-seo-results

Slide 121

Slide 121 text

Rad Paluszak: Content vs SERPs The Search Initiative Method 4: Scrape SERPs U s e r I n t e n t Potential Issues: • You get Captchas because Google detects automated query. • You’ll have to set a custom user agent (Chrome Desktop) or change XPath. • Switch to the Javascript crawler.

Slide 122

Slide 122 text

Rad Paluszak: Content vs SERPs The Search Initiative SERP Intent Discovery U s e r I n t e n t • Try to analyse the SERP Language. Have predicted and dominating intent in mind.

Slide 123

Slide 123 text

Rad Paluszak: Content vs SERPs The Search Initiative SERP Intent Discovery U s e r I n t e n t • Try to analyse the SERP Language. Have predicted and dominating intent in mind. • Scraping page titles and selected descriptions allows you to better optimise your meta tags. Think what users really want.

Slide 124

Slide 124 text

Rad Paluszak: Content vs SERPs The Search Initiative SERP Intent Discovery U s e r I n t e n t • Try to analyse the SERP Language. Have predicted and dominating intent in mind. • Scraping page titles and selected descriptions allows you to better optimise your meta tags. Think what users really want. • Having all the SERP snippets also helps to create silos or topical clusters.

Slide 125

Slide 125 text

Rad Paluszak: Content vs SERPs The Search Initiative SERP Intent Discovery U s e r I n t e n t • Try to analyse the SERP Language. Have predicted and dominating intent in mind. • Scraping page titles and selected descriptions allows you to better optimise your meta tags. Think what users really want. • Having all the SERP snippets also helps to create silos or topical clusters. • Go beyond on-page content optimisation – optimise your page for semantic relevance, intent and desire.

Slide 126

Slide 126 text

Rad Paluszak: Content vs SERPs The Search Initiative +9% +32%

Slide 127

Slide 127 text

Rad Paluszak: Content vs SERPs The Search Initiative User Intent Latent Intent

Slide 128

Slide 128 text

Rad Paluszak: Content vs SERPs The Search Initiative Around Xmas, Black Friday and other festive seasons, the results change aiming at buying intent and positive sentiment.

Slide 129

Slide 129 text

Rad Paluszak: Content vs SERPs The Search Initiative

Slide 130

Slide 130 text

Rad Paluszak: Content vs SERPs The Search Initiative ‘black game console’ Nov 2018 U s e r I n t e n t

Slide 131

Slide 131 text

Rad Paluszak: Content vs SERPs The Search Initiative ‘black game console’ Oct 2019 U s e r I n t e n t

Slide 132

Slide 132 text

Rad Paluszak: Content vs SERPs The Search Initiative Latent Intent U s e r I n t e n t • Optimising for Latent Intent is Difficult and niche- specific.

Slide 133

Slide 133 text

Rad Paluszak: Content vs SERPs The Search Initiative Latent Intent U s e r I n t e n t • Optimising for Latent Intent is Difficult and niche- specific. • Guessing the future interest or desire of your users can be backed up by data and trends …

Slide 134

Slide 134 text

Rad Paluszak: Content vs SERPs The Search Initiative Latent Intent U s e r I n t e n t • Optimising for Latent Intent is Difficult and niche- specific. • Guessing the future interest or desire of your users can be backed up by data and trends … BUT it’s still guessing ;)

Slide 135

Slide 135 text

Rad Paluszak: Content vs SERPs The Search Initiative Latent Intent U s e r I n t e n t • Optimising for Latent Intent is Difficult and niche- specific. • Guessing the future interest or desire of your users can be backed up by data and trends … BUT it’s still guessing ;) • There are people with strong case studies around Latent Intent (see Raynernomics) but it’s still more of a PoC than a solid, scalable strategy. Keep an eye, tho!

Slide 136

Slide 136 text

Rad Paluszak: Content vs SERPs The Search Initiative Thank You!