Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
a I ( M A M89 :) 3 /21 1 / 0/ ) ) A c
Slide 2
Slide 2 text
s ( 21 1- 40 z ( u 76 6 7 ) ) h o 7M M AI( : 7 r a ( k c 7 i
Slide 3
Slide 3 text
3 IS o J P 123 32 0 J P T 0 J P T 0 J P T 6 n 0 J P T 4 DJ PG C A 7E5 D4J A C C eB E5
Slide 4
Slide 4 text
P GI gGI M ci 06?5: 0 65A 4? 5 B C 84 6 76 .?4 8 11ae h M ci 2 3 gM N M ci g T M
Slide 5
Slide 5 text
Slide 6
Slide 6 text
6 AI= +.9<*!%;7BG =?4D +.1:/"(* 5C0 A,"(&$ = %&' )6F5C=? >@8E3 -23
Slide 7
Slide 7 text
Slide 8
Slide 8 text
<; .%7 FC* '4 <;p53L. + '&(AE!1IBM) DK5=(FC*'40 BH1G .%7D/:36I (-"8$) .%7>@1GJD ↑ # 2?, )9
Slide 9
Slide 9 text
1
Slide 10
Slide 10 text
1 0 0 n RAK ) S2 AK K n g 1 0 Ra Ra 0 5 Q e ( 425 %10/7& (! * , 10/(! $%)+.# # " 425 'Kaggle(063(-
Slide 11
Slide 11 text
1 n eh a kGn f R / :/ V Fod eh aFH lm g Sb RHMS A n V . :/ i eh a cS A p 2 / /: / ./: :.
Slide 12
Slide 12 text
M ,1 42 , 2 , 0 0 9 22 3. n ? n : AC
Slide 13
Slide 13 text
No content
Slide 14
Slide 14 text
4 1 #)$ ' !%( * $ (Convolutional Neural Network) $ %" & &
Slide 15
Slide 15 text
1 $)& (" Fingerprint/Descriptor % & (Graph Convolutional Neural Network) & ! # ' '
Slide 16
Slide 16 text
n 1 G 6 C n N : Altae-Tran et al, ACS Cent. Sci.,2017,3(4), pp 283–293
Slide 17
Slide 17 text
Slide 18
Slide 18 text
n ( ) P O N B A n I 24 0 2 1 1 Virtual screening… 1 2 3
Slide 19
Slide 19 text
n N G n K C 967 (# &).0 *! "%*@ =1;=>* *(400) 4?:
Slide 20
Slide 20 text
7 8 T d fng ] N mi a M hmi ] C [ Ct ep r a 21 . ? 0 ?9 5 ( ) ) ( )( 02 s y , 9 T u CG ] NaY I
Slide 21
Slide 21 text
( 7 2 Extended Connectivity Fingerprint Functional Connectivity Fingerprint Topological Torsions Atom Pairs Fingerprint RDKit Fingerprint Avalon fingerprint !fingerprint (6) 70 Random Forest Extremely Randomized Trees Gradient Boosted Trees Multilayer perceptron Support Vector Regression ! $)%(&' (5) 65 = 30# Elastic Net Pfinal Level 0 Level 1 " # 1 2 ) ):
Slide 22
Slide 22 text
Fingerprint ECFP FCFP TT AP RDK AVLN F-Stacking RF 0.848 0.855 0.816 0.686 0.652 0.722 0.892 ERT 0.869 0.889 0.844 0.798 0.671 0.768 0.907 GBT 0.852 0.864 0.835 0.808 0.733 0.758 0.891 MLP 0.802 0.777 0.623 0.814 0.651 0.712 0.895 SVR 0.856 0.852 0.688 0.763 0.662 0.693 0.877 L-Stacking 0.890 0.911 0.870 0.881 0.799 0.846 0.930 FL-Stacking Level0 ROC-AUC ) 1 ) (0( 72 n 0 3 0 0
Slide 23
Slide 23 text
2 ( 7 )1)0 3 5 IMSBIO () () 1 8 1 Univ-shizuoka 1 PFDrug ()Preferred Networks 1 kiharalab 1 1 Graph CNN
Slide 24
Slide 24 text
1 0
Slide 25
Slide 25 text
38 5 120 n 0 u ”Taklbe : () :. 00 1Tcn n s T n p w Th cn dg I I “ L ing n r P v T ng D n T t p o y 2 8: : .2 1 2 - // /: 0:
Slide 26
Slide 26 text
)0 3 6 ( 2 1 n Lel an f LN b i - b i -/) - n U N gc d - s n D - b i ( 1) -1- P t ( 1) ) vo el an (
Slide 27
Slide 27 text
)0 37 ( 2 1 n 24 9: 9 0 4 n 1 9 9 56 8 2 3 W 2 9 4 O O O !!!
Slide 28
Slide 28 text
Slide 29
Slide 29 text
9 21 n e l ( g n K n ) a )
Slide 30
Slide 30 text
20 2 3 n 3 t 1 o r ru 2 a i 1 o ru ) 2 l1 ru 1es 2 1 r f K2 n (( h g g K2
Slide 31
Slide 31 text
1 3 n ( ) ) n : )
Slide 32
Slide 32 text
X 8 T 9 8. A T 9 8. A T 9 8. A 0 3 T . 9? A 5 2
Slide 33
Slide 33 text
( • 9) : / 51) 5 • 1 55 5 2 1:023/ 5