Slide 1

Slide 1 text

a I ( M A M89 :) 3 /21 1 / 0/ ) ) A c

Slide 2

Slide 2 text

s ( 21 1- 40 z ( u 76 6 7 ) ) h o 7M M AI( : 7 r a ( k c 7 i

Slide 3

Slide 3 text

3 IS o J P 123 32 0 J P T 0 J P T 0 J P T 6 n 0 J P T 4 DJ PG C A 7E5 D4J A C C eB E5

Slide 4

Slide 4 text

P GI gGI M ci 06?5: 0 65A 4? 5 B C 84 6 76 .?4 8 11ae h M ci 2 3 gM N M ci g T M

Slide 5

Slide 5 text

Slide 6

Slide 6 text

6 AI= +.9<*!%;7BG =?4D +.1:/"(* 5C0 A,"(&$ = %&' )6F5C=? >@8E3 -23

Slide 7

Slide 7 text

Slide 8

Slide 8 text

<; .%7 FC* '4 <;p53L. + '&(AE!1IBM) DK5=(FC*'40 BH1G .%7D/:36I (-"8$) .%7>@1GJD ↑ # 2?, )9

Slide 9

Slide 9 text

1

Slide 10

Slide 10 text

1 0 0 n RAK ) S2 AK K n g 1 0 Ra Ra 0 5 Q e ( 425 %10/7& (! * , 10/(! $%)+.# # " 425 'Kaggle(063(-

Slide 11

Slide 11 text

1 n eh a kGn f R / :/ V Fod eh aFH lm g Sb RHMS A n V . :/ i eh a cS A p 2 / /: / ./: :.

Slide 12

Slide 12 text

M ,1 42 , 2 , 0 0 9 22 3. n ? n : AC

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

4 1 #)$ ' !%( * $ (Convolutional Neural Network) $ %" & &

Slide 15

Slide 15 text

1 $)& (" Fingerprint/Descriptor % & (Graph Convolutional Neural Network) & ! # ' '

Slide 16

Slide 16 text

n 1 G 6 C n N : Altae-Tran et al, ACS Cent. Sci.,2017,3(4), pp 283–293

Slide 17

Slide 17 text

Slide 18

Slide 18 text

n ( ) P O N B A n I 24 0 2 1 1 Virtual screening… 1 2 3

Slide 19

Slide 19 text

n N G n K C 967 (# &).0 *! "%*@ =1;=>* *(400) 4?:

Slide 20

Slide 20 text

7 8 T d fng ] N mi a M hmi ] C [ Ct ep r a 21 . ? 0 ?9 5 ( ) ) ( )( 02 s y , 9 T u CG ] NaY I

Slide 21

Slide 21 text

( 7 2 Extended Connectivity Fingerprint Functional Connectivity Fingerprint Topological Torsions Atom Pairs Fingerprint RDKit Fingerprint Avalon fingerprint !fingerprint (6) 70 Random Forest Extremely Randomized Trees Gradient Boosted Trees Multilayer perceptron Support Vector Regression ! $)%(&' (5) 65 = 30# Elastic Net Pfinal Level 0 Level 1 " # 1 2 ) ):

Slide 22

Slide 22 text

Fingerprint ECFP FCFP TT AP RDK AVLN F-Stacking RF 0.848 0.855 0.816 0.686 0.652 0.722 0.892 ERT 0.869 0.889 0.844 0.798 0.671 0.768 0.907 GBT 0.852 0.864 0.835 0.808 0.733 0.758 0.891 MLP 0.802 0.777 0.623 0.814 0.651 0.712 0.895 SVR 0.856 0.852 0.688 0.763 0.662 0.693 0.877 L-Stacking 0.890 0.911 0.870 0.881 0.799 0.846 0.930 FL-Stacking Level0 ROC-AUC ) 1 ) (0( 72 n 0 3 0 0

Slide 23

Slide 23 text

2 ( 7 )1)0 3 5 IMSBIO () () 1 8 1 Univ-shizuoka 1 PFDrug ()Preferred Networks 1 kiharalab 1 1 Graph CNN

Slide 24

Slide 24 text

1 0

Slide 25

Slide 25 text

38 5 120 n 0 u ”Taklbe : () :. 00 1Tcn n s T n p w Th cn dg I I “ L ing n r P v T ng D n T t p o y 2 8: : .2 1 2 - // /: 0:

Slide 26

Slide 26 text

)0 3 6 ( 2 1 n Lel an f LN b i - b i -/) - n U N gc d - s n D - b i ( 1) -1- P t ( 1) ) vo el an (

Slide 27

Slide 27 text

)0 37 ( 2 1 n 24 9: 9 0 4 n 1 9 9 56 8 2 3 W 2 9 4 O O O !!!

Slide 28

Slide 28 text

Slide 29

Slide 29 text

9 21 n e l ( g n K n ) a )

Slide 30

Slide 30 text

20 2 3 n 3 t 1 o r ru 2 a i 1 o ru ) 2 l1 ru 1es 2 1 r f K2 n (( h g g K2

Slide 31

Slide 31 text

1 3 n ( ) ) n : )

Slide 32

Slide 32 text

X 8 T 9 8. A T 9 8. A T 9 8. A 0 3 T . 9? A 5 2

Slide 33

Slide 33 text

( • 9) : / 51) 5 • 1 55 5 2 1:023/ 5