Slide 1

Slide 1 text

ػցֶशͰώτͷߦಈΛม͑Δ !౦ژେֶ޻ֶ෦߸ؗ ໼૔େເʢ΍͘ΒͻΖΉʣ

Slide 2

Slide 2 text

w ໼૔େເʢ΍͘ΒͻΖΉʣ w υΠπɾϚοΫεϓϥϯΫਓؒ։ൃݚڀॴͰ )VNBO"*ΠϯλϥΫγϣϯͷݚڀʹैࣄ ࣗݾ঺հ

Slide 3

Slide 3 text

w ໼૔େເʢ΍͘ΒͻΖΉʣ w (PPHMFٴͼ.JDSPTPGU3FTFBSDI1I%'FMMPX w +45"$59 ະདྷࣾձ૑଄ࣄۀ౳ͰσβΠϯࢧԉ͔Β ൃୡো͕͍ࣇࢧԉ·ͰػցֶशͷԠ༻Λ֦͛Δݚڀʹैࣄ w ઌ݄ΑΓ+45͖͕͚͞ʮࣾձมֵج൫ʯʹͯ ʮػցֶश࣌୅ͷࣾձม༰Λཧղ͢Δ ج൫Ξϓϩʔνͷ૑ग़ʯͱ͍͏՝୊Λ։࢝ ࣗݾ঺հ

Slide 4

Slide 4 text

ݚڀϓϩδΣΫτྫ w Իָܦݧͷͳ͍ਓͰ΋ࣗ༝ͳදݱΛੜΈग़ͤΔॳ৺ऀ޲͚࡞ۂࢧԉ "* ͍ΖΜͳόϦΤʔγϣϯΛ ୳ࡧ͠ͳ͕Β޷͖ͳԻָʹ ग़ձ͑ΔΠϯλϥΫγϣϯ Yakura, et al. ISMIR 2023.

Slide 5

Slide 5 text

ݚڀϓϩδΣΫτྫ w $07*% ԼͷΞΠυϧͷѲखձͷมԽ͔Β ςϨίϛϡχέʔγϣϯͷड༰ͱݶքΛٞ࿦ Yakura,. ACM CHI 2021. workplace communication [1,31] ef f iciency connectedness intimate relationships [24,50] Idol groups ? The image is taken from a YouTube video only for presentation purpose. https://www.youtube.com/watch?v=6yOxmVoAE14 The photos are taken from Wikimedia Commons and Flickr under the CC-BY-SA 2.0 license. https://w.wiki/3AF4 https://www. f lickr.com/photos/kanesue/47545700921/

Slide 6

Slide 6 text

ݚڀͷڵຯ ػցֶशͷ׆༻ͷͨΊͷ ΠϯλϥΫγϣϯݚڀ ػցֶशٕज़ͷݚڀ Ϣʔβ ϦεΫ΍ ݶք ࣾձͰͷ ड༰ w ΋ͱ΋ͱ͸"EWFSTBSJBM&YBNQMFͳͲػցֶशηΩϡϦςΟͷྖҬΛݚڀ w ಺ࡏతͳݶքΛલఏʹɺࣾձͰػցֶशͷԠ༻৔໘Λ޿͛Δʹ͸ʁͱ͍͏ ؍఺͔ΒػցֶशͷϥετϫϯϚΠϧ໰୊Λղ͘ΠϯλϥΫγϣϯΛݕ౼ """* *+$"*

Slide 7

Slide 7 text

.JOEMFTT"UUSBDUPSػցֶशͷِཅੑΛ ౿·͑ͨௌ֮ϑΟʔυόοΫσβΠϯ 7 Riku Arakawa*1, Hiromu Yakura*2,3 *: equal contribution 1 : Carnegie Mellon University 2: Max-Planck Institute for Human Development (Previously: University of Tsukuba) 3: National Institute of Advanced Industrial Science and Technology (AIST)

Slide 8

Slide 8 text

ػցֶशٕज़ͷ׆༻Ͱͦ͏ͨ͠৔໘ΛݮΒ͢͜ͱ͸Ͱ͖ͳ͍͔ʁ S. Whittaker Rethinking Video as a Technology for Interpersonal Communications: Theory and Design Implications. Int. J. Hum. Comput. 1995. C. Coombs. Will COVID-19 Be the Tipping Point for the Intelligent Automation of Work? A Review of the Debate and Implications for Research. Int. J. Inf. Manage. 2020. A. Kuzminykh, et al. Classification of Functional Attention in Video Meetings. ACM CHI 2020. R. S. Oeppen, et al. Human Factors Recognition at Virtual Meetings and Video Conferencing: How to Get the Best Performance From Yourself and Others. Br. J. Oral Maxillofac. Surg. 2020. w ಛʹ$07*%Ҏ߱ɺΦϯϥΠϯ΍ ಈըϕʔεͷίϛϡχέʔγϣϯͷ ػձ͸֨ஈʹ૿͍͑ͯΔ<8IJUUBLFS> w ͔͠͠ɺͦ͏͍ͬͨ৔໘Ͱਓؒ͸ ༰қʹूதΛࣦ͍͕ͪ<,J[NJOZLI> w εϚϗΛ৮ͬͨΓɺ8FCϒϥ΢δϯάΛͨ͠Γͱ͍͏ӨڹͰ ΦϯϥΠϯձٞͷੜ࢈ੑ͕௿͘ͳ͍ͬͯΔ<0QQFO> 8

Slide 9

Slide 9 text

w إը૾͔Β஫ҙ͕ࢄອʹͳͬͨॠؒΛݕग़͢ΔػցֶशϞσϧ͸ଘࡏ w ΦϯϥΠϯतۀͰूத͍ͯ͠ͳֶ͍ੜʹΞϥʔτ͢Δ͜ͱ͸Մೳ<5IPNBT> w ͔͠͠ɺޡݕ஌ͰΞϥʔτͯ͠͠·͏ͱٯʹूதΛଛͳ͏͚ͩͰͳ͘ γεςϜ΁ͷෆ৴ײΛট͘͜ͱʹͳΔ<%JFUWPSTU> w ͔͠΋ɺ ҙཉͷ௿͍ͱ͖ʹʮूத͍ͯͩ͘͠͞ʯͳͲͱ͚ͩ Ξϥʔτͯ͠΋ɺͦΕͰूத͕໭Δͱ͸ݶΒͳ͍ w ਓؒͷೝ஌ϓϩηεʹґڌͨ͠ϑΟʔυόοΫσβΠϯΛ͠ͳ͍ͱ ػցֶशٕज़͚ͩͰߦಈม༰Λى͜͢͜ͱ͸೉͍͠ A. Gupta, et al. DAiSEE: Towards User Engagement Recognition in the Wild. arXiv, 2016. C. Thomas, et al. Predicting Student Engagement in Classrooms Using Facial Behavioral Cues ACM CHI MIE Workshop 2017. B. J. Dietvorst, et al. Algorithm Aversion: People Erroneously Avoid Algorithms After Seeing Them Err. J. Exp. Psychol. 2015. [Gupta+ '16] 9

Slide 10

Slide 10 text

10 10

Slide 11

Slide 11 text

w զʑ͸ίϛϡχέʔγϣϯʹ͓͍ͯɺϐον΍ԻྔΛมԽͤ͞ଞऀͷ஫ҙΛҾ͘ w ೴ܭଌʹΑΓɺແҙࣝతʹͦ͏ͨ͠มԽʹ൓Ԡ͍ͯ͠Δͱ֬ೝ͞Ε͍ͯΔ<9V> w ͜ͷ஌֮ಛੑΛར༻͢Δ͜ͱͰɺ׬ᘳͰͳ͍ػցֶशϞσϧΛ࢖͍ͳ͕Β΋ ஫ҙΛऔΓ໭ͨ͢Ίͷߦಈม༰ϑΟʔυόοΫΛ࣮ݱͰ͖Δ Y. Xu. Speech Melody as Articulatorily Implemented Communicative Functions. Speech Comm. 2005. 11

Slide 12

Slide 12 text

.JOEMFTTDPNQVUJOH<"EBNT> A. T. Adams et al. Mindless Computing: Designing Technologies to Subtly Influence Behavior. UbiComp 2015. U. Lyngs et al. Self-Control in Cyberspace: Applying Dual Systems Theory to a Review of Digital Self-Control Tools. ACM CHI 2019. D. Kahneman. Thinking, Fast and Slow. 2011. ΧʔωϚϯͷೋॏաఔཧ࿦ʹجͮ͘σβΠϯ <,BIOFNBO -ZOHT> • γεςϜ௚ײతͳ଎͍ࢥߟ • γεςϜ࿦ཧతͳ஗͍ࢥߟ γεςϜΛ௨ͯ͠ߦಈม༰ΛੜΈग़͢ʹ͸ Ϣʔβͷಈػ͚͕ͮඞཁʹͳͬͯ͘Δ ˠਓؒͷੜಘతͳಛੑΛ׆༻͢Δ͜ͱͰ ɹϢʔβͷ࿦ཧతͳࢥߟʹґଘͤͣʹ ɹߦಈม༰ΛੜΈग़͢Ξϓϩʔν 12

Slide 13

Slide 13 text

஫ҙ͕ҳΕ͍ͯΔͱݕग़͞Εͨ࣌ʹ Ի੠ͷϐον΍ԻྔΛઁಈͤ͞ΔΞϓϩʔνΛఏҊ w ಛʹԻ੠Λ׆༻͢Δ͜ͱͰɺҎԼͷར఺͕ಘΒΕΔ w ϑΟʔυόοΫͷఏ͕ࣔ͋ͬͯ΋ɺֶशͦͷ΋ͷ͕தஅ͞Εͳ͍ w Αͦݟ͍ͯͯ͠ؾ͔ͮͳ͍ͱ͍ͬͨՄೳੑ͕ͳ͘ɺௌ֮͸ಧ͖΍͍͢ w ௥Ճͷ֎෦σόΠεΛ༻͍ͳͯ͘΋ϑΟʔυόοΫΛఏࣔͰ͖Δ 13

Slide 14

Slide 14 text

ΦϯσϚϯυतۀΛ໛ͨ͠؀ڥͰɺεςοϓʹ෼͚ͯ༗ޮੑΛݕূ ).JOEMFTT"UUSBDUPS ͸Ϣʔβͷ໌ࣔతͳҙࣝ෇͚ͳ͘ ߦಈม༰ΛੜΈग़͢ϑΟʔυόοΫσβΠϯͱͯ͠ػೳ͢Δ ˠਓؒͷΞϊςʔλΛ׆༻࣮ͨ͠ݧઃܭͰ֬ೝ ).JOEMFTT"UUSBDUPS ͸׬ᘳͰͳ͍ػցֶशϞσϧͱ૊Έ߹Θͤͯ΋ ػೳ͢Δ͚ͩͰͳ͘ɺ ΞϥʔτͷఏࣔΑΓϢʔβͷධՁ΋ߴ͘ͳΔ ˠ࣮ࡍʹطଘͷػցֶशϞσϧΛ૊ΈࠐΜ࣮ͩݧઃܭͰ֬ೝ 14

Slide 15

Slide 15 text

w հೖ͋Γ৚݅Ͱ͸ɺϦϞʔτͰ؍࡯͍ͯ͠ΔΞϊςʔλʔ͕ ࢀՃऀͷूதঢ়ଶͷมԽΛ൑ఆͯ͠ϦΞϧλΠϜʹه࿥ w ूத͕ͦΕͨͱ͖ʹͷ֬཰ͰԻ੠ϑΟʔυόοΫΛఏࣔ w հೖͳ͠৚݅͸ɺೝ஌ෛՙΛൺֱ͢ΔͨΊͷϕʔεϥΠϯͱͯ͠ಋೖ 15 ࣮ݧϑΟʔυόοΫͦͷ΋ͷͷޮՌݕূ

Slide 16

Slide 16 text

w ϑΟʔυόοΫͷఏ͕ࣔूதΛ໭͢ͷʹཁͨ࣌ؒ͠Λ༗ҙʹ࡟ݮ͠ɺ ఏҊख๏ͷߦಈม༰ΛੜΈग़͢खஈͱͯ͠ͷ༗ޮੑΛ֬ೝ w /"4"5-9Ͱͷೝ஌ෛՙ΋มΘΒͣɺ໌ࣔతҙࣝ෇͚ͳ͠ʹػೳ͢Δͱࣔࠦ 16 ࣮ݧϑΟʔυόοΫͦͷ΋ͷͷޮՌݕূ

Slide 17

Slide 17 text

࣮ݧِཅੑͷϦεΫͷதͰͷ༗ޮੑ w ໊ͷࢀՃऀ͕ͭͷߨٛಈըΛࢹௌ͠ɺͦͷ಺༰Λཁ໿ w ࢀՃऀ࣮ؒݧͰɺఏҊख๏ɾ໌ࣔతͳΞϥʔτɾհೖͳ͠Λൺֱ w հೖ͸طଘͷػցֶशϞσϧͰൃಈ͞ΕΔͨΊɺ ِཅੑͷϦεΫ͕͋Δঢ়ଶ 17

Slide 18

Slide 18 text

ूத͍ͯ͠ͳ͍࣌ؒͷ ࡟ݮʹߩݙ ूத͕ͦΕΔස౓ࣗମ͸ มԽͳ͠ ໌ࣔతͳΞϥʔτΑΓ ମݧͷධՁ͸޲্ 18 ࣮ݧِཅੑͷϦεΫͷதͰͷ༗ޮੑ

Slide 19

Slide 19 text

ೋॏաఔཧ࿦ΛഎܠʹɺԻ੠ͷϐονͱԻྔΛઁಈͤ͞Δ͜ͱͰ ϢʔβͷूதΛҡ࣋͢ΔΠϯλϥΫγϣϯσβΠϯΛఏࣔ͠ɺ ػցֶशͷِཅੑʹର͢Δϩόετੑ͕͋Δ͜ͱΛݕূ .JOEMFTT"UUSBDUPSػցֶशͷِཅੑΛ ౿·͑ͨௌ֮ϑΟʔυόοΫσβΠϯ

Slide 20

Slide 20 text

$BU"MZTUେن໛ੜ੒ϞσϧΛ༻͍ͨ ஌తλεΫͷઌԆ͹͠๷ࢭΠϯλϥΫγϣϯ Riku Arakawa*1, Hiromu Yakura*2,3, Masataka Goto3 *: equal contribution 1 : Carnegie Mellon University 2: Max-Planck Institute for Human Development (Previously: University of Tsukuba) 3: National Institute of Advanced Industrial Science and Technology (AIST) 20

Slide 21

Slide 21 text

21 S. Noy, et al. Experimental evidence on the productivity effects of generative artificial intelligence. Science 2023. https://www.technologyreview.com/2023/07/13/1076199/ --.͸஌తੜ࢈ੑΛ ߴΊΔ͔

Slide 22

Slide 22 text

--. Λ͏·͘࢖͍͜ͳ͢͜ͱ͸೉͘͠ ׆༻৔໘͸ґવͱͯ͠ݶΒΕ͍ͯΔ ಛఆͷυϝΠϯ஌͕ࣝ଍Γͳ͍৔߹΍ ͜͏ͨ͠ݶքΛલఏʹ͠ͳ͕Β΋ ׆༻ൣғΛ޿͛Δ͜ͱ͸Ͱ͖ͳ͍͔ʁ ৽ͨͳΞΠσΞͷఏࣔʹ΋ϋʔυϧ͕ 22

Slide 23

Slide 23 text

Ծઆ--. ͷଘࡏ͸࡞ۀͷʮઌԆ͹͠บʯղফʹ໾ཱͭ Ծఆ׬ᘳͰ͸ͳ͍ੜ੒݁ՌͰ͋ͬͯ΋ Ϣʔβͷ஫ҙΛλεΫʹҾ͖໭͢ͷʹ͸࢖͑Δ طଘख๏ ਐḿͷՄࢹԽʹΑΔ ಈػ͚ͮ<-JV > αΠτϒϩοΧʔ <,PWBDT > ఏҊख๏ G. Kovacs, et al. Rotating Online Behavior Change Interventions Increases Effectiveness But Also Increases Attrition. ACM CSCW 2018. Y. Liu, et al. Supporting Task Resumption Using Visual Feedback. ACM CSCW 2014. --. Λ༻͍ͨհೖ 23

Slide 24

Slide 24 text

σϞεϥΠυ࡞੒த 24

Slide 25

Slide 25 text

25

Slide 26

Slide 26 text

$BU"MZTU֓ཁ λεΫͷछྨʹؔΘΒͣԠ༻Ͱ͖ΔΞϓϩʔνͱͯ͠ઃܭ จॻࣥචͱεϥΠυ࡞੒ͷͭͷγφϦΦͰޮՌݕূ 26

Slide 27

Slide 27 text

·ͣϢʔβ͕௕࣌ؒʹ౉ͬͯ࡞ۀΛதஅ͍ͯ͠Δ৔໘Λݕ஌ $BU"MZTU֓ཁ 27

Slide 28

Slide 28 text

Α͋͘ΔհೖΞϓϩʔν --.Λ࢖ͬͯ ϝοηʔδͷఏࣔΛ௒͑ͨ Ξϓϩʔν͸Ͱ͖ͳ͍͔ $BU"MZTUհೖ ɾόϦΤʔγϣϯΛ૿΍͢ ɾ಺༰ΛύʔιφϥΠζ͢Δ ︙ 28

Slide 29

Slide 29 text

--.͕தஅͨ͠࡞ۀͷଓ͖ͷΞΠσΞΛఏࣔ͢Δ͜ͱͰ w NPUJWBUJPO࡞ۀͷ࠶։΁ͷಈػ͚ͮΛߦ͏ w BCJMJUZ࡞ۀͷ࠶։΁ͷೝ஌తϋʔυϧΛԼ͛Δ R. E. Petty, et al. The Elaboration Likelihood Model of Persuasion. Adv. Exp. Soc. Psychol. 1986. B. J. Fogg. A Behavior Model for Persuasive Design. ACM Persuasive 2009. &MBCPSBUJPOMJLFMJIPPENPEFM &-. <1FUUZ> w ߦಈม༰ΛੜΈग़͢Ҽࢠͱͯ͠ NPUJWBUJPOͱBCJMJUZͷ྆ํ͕ඞཁͱࢦఠ <'PHH> $BU"MZTUհೖ 29

Slide 30

Slide 30 text

όϦΤʔγϣϯͷ͋Δհೖͱͯ͠ػೳ͢Δ͚ͩͰͳ͘ $BU"MZTUհೖ 30

Slide 31

Slide 31 text

গ͠త֎Εͩͬͨͱͯ͠΋ ߟ͑Δʮωλʯ͕͋Δ͜ͱͰ஫ҙΛҾ͖໭ͤΔ $BU"MZTUհೖ 31

Slide 32

Slide 32 text

w (15 Ͱதஅ͞Ε͍ͯΔλεΫͷଓ͖ͷΞΠσΞΛੜ੒ w εϥΠυ࡞੒࣌ʹ͸ %JGGVTJPO.PEFM Ͱը૾΋ੜ੒ $BU"MZTU࣮૷ 32

Slide 33

Slide 33 text

Ϣʔβ࣮ݧαΠτϒϩοΧʔͱͷൺֱ จॻࣥච εϥΠυ࡞੒ w )தஅͨ͠λεΫͷଓ͖Λఏࣔ͢Δ͜ͱͰɺ$BUBMZTU ͸Ϣʔβͷ஫ҙΛҾ͖໭ͤΔ w )Ϣʔβͷ஫ҙΛҾ͖໭͢͜ͱͰɺ$BUBMZTU ͸࡞ۀͷ࠶։ΛޮՌతʹଅͤΔ w )$BU"MZTU Λ༻͍Δ͜ͱͰɺλεΫͷதஅΛճආ͠ੜ࢈ੑΛߴΊΒΕΔ w )$BU"MZTU͸Ϣʔβͷೝ஌ෛՙΛߴΊͣʹ࢖͏͜ͱ͕Ͱ͖Δ 33

Slide 34

Slide 34 text

w *HOPSBODFSBUF௨஌͕ແࢹ͞Εׂͨ߹ w *OUFSFTUSFUSJFWBMUJNF௨஌͔Β࡞ۀ࠶։·Ͱͷॴཁ࣌ؒ w 1SPHSFTTBGUFSSFTVNQUJPO࠶։͔ΒҰఆ࣌ؒͷ࡞ۀྔʢจࣈ਺౳ʣ w 5PUBMUJNF༩͑ΒΕͨλεΫશମͷॴཁ࣌ؒ w 4VCKFDUJWFRVBMJUZΫϥ΢υϫʔΧʹΑΔ੒Ռ෺΁ͷΫΦϦςΟධՁ w $PHOJUJWFMPBE/"4"5-9 Ͱܭଌ͞Εͨೝ஌ෛՙ w 4ZTUFNVTBCJMJUZ464 Ͱܭଌ͞ΕͨϢʔβϏϦςΟධՁ ? ? શମͷॴཁ࣌ؒͱୈࡾऀͷΫΦϦςΟධՁ͸͕ࠩͳ͔ͬͨ΋ͷͷ $BU"MZTU͸શମతʹ༗ҙͳޮՌΛࣔͨ͠ Ϣʔβ࣮ݧࢦඪٴͼ݁Ռ จॻࣥච εϥΠυ࡞੒ 34

Slide 35

Slide 35 text

w $BU"MZTU Λ೔ؒʹΘͨͬͯఏڙ w λεΫ౳͸༩͑ͣࣗ༝ʹ࢖༻ w ࢖༻ޙʹ൒ߏ଄ԽΠϯλϏϡʔ Ϣʔβ࣮ݧ௕ظతͳ࢖༻࣮ݧ 35

Slide 36

Slide 36 text

w ߦಈʹ༩͑ͨӨڹ w "*ͷਫ਼౓ʹ͍ͭͯͷײ૝ w $BU"MZTUͷ໾ׂ w 3FNJOEFS*EFBUPS1FFS w վળͷ༨஍ ΠϯλϏϡʔ݁Ռ ࢖༻ঢ়گ w ೔ؒͷؒͰ࢖༻ස౓ʹࠩ͸ݟΒΕͣ த௕ظతͳޮՌ΍ϢʔβϏϦςΟΛࣔࠦ ৄࡉ͸࿦จΛࢀর͍ͩ͘͞ʂ Ϣʔβ࣮ݧ௕ظతͳ࢖༻࣮ݧ 36

Slide 37

Slide 37 text

ᶃ--. Λ fi OFUVOJOH ͢΂͖͔ υϝΠϯ΍λεΫ͝ͱʹϞσϧΛνϡʔχϯά͢Ε͹ ʮઌԆ͹͠ʯճආ͚ͩͰͳ͘ɺ௚઀తͳ࡞ۀͷޮ཰Խʹ΋ͭͳ͕Δ طଘͷϞσϧΛͦͷ··࢖͑͹௥Ճίετͳ͠ʹ ෯޿͍υϝΠϯͷ࡞ۀΛࢧԉͰ͖Δ ٞ࿦ 37

Slide 38

Slide 38 text

ᶄ"*ͷೳಈతͳ࢖༻ͱडಈతͳ࢖༻ ʮੜ੒ϘλϯʯʹΑΔೳಈతͳ࢖༻ߴ͍ظ଴஋㲗ࣦ๬ͷϦεΫ ʮ$BU"MZTUʯͷΑ͏ͳडಈతͳ࢖༻௿͍ظ଴஋㲗ϦεΫͷ௿ݮ 6OSFNBSLBCMF"*<:BOH > ໨ཱͨͣʹ"*͕Ձ஋Λൃش͢ΔΠϯλϥΫγϣϯσβΠϯ ≒ Q. Yang, et al. Unremarkable AI: Fitting Intelligent Decision Support into Critical, Clinical Decision-Making Processes. ACM CHI 2019. ٞ࿦ 38

Slide 39

Slide 39 text

Writing Slide-Editing ϑΝΠϯνϡʔχϯάʹΑͬͯਫ਼౓ΛߴΊɺ௚઀λεΫΛޮ཰Խ͢ΔͷͰ͸ͳ͘ ׬ᘳͰ͸ͳ͘ͱ΋طଘͷϞσϧΛ͏·͘׆༻͢Δ͜ͱͰ Ϣʔβͷߦಈม༰Λಋ͖ɺ%JHJUBM8FMMCFJOHͷ޲্Λ໨ࢦ͢ΠϯλϥΫγϣϯ Composition ɾɾɾ $BU"MZTUେن໛ੜ੒ϞσϧΛ༻͍ͨ ஌తλεΫͷઌԆ͹͠๷ࢭΠϯλϥΫγϣϯ 39

Slide 40

Slide 40 text

ػցֶशͰώτͷߦಈΛม͑Δ ػցֶश͕ώτͷߦಈΛม͑Δ 40

Slide 41

Slide 41 text

&NQJSJDBMFWJEFODFPG-BSHF-BOHVBHF.PEFMT JOGMVFODFPOIVNBOTQPLFODPNNVOJDBUJPO 41 Hiromu Yakura*, Ezequiel Lopez-Lopez*, Levin Brinkmann*, Ignacio Serna, Prateek Gupta, Iyad Rahwan *: equal contribution Max-Planck Institute for Human Development

Slide 42

Slide 42 text

● $IBU(15 ͸ͳ͔ͥ EFMWF ͱ͍͏ ୯ޠΛ࢖͍͕ͪͱ͍͏ݱ৅͕໌Β͔ʹ ● ଞʹ΋ $IBU(15 ʹಛ௃తͳ୯ޠ͕ ൃݟ͞ΕɺͦΕΒͷՊֶ࿦จͰͷ ग़ݱස౓ͷٸ૿΋ࢦఠ͞Ε͍ͯΔ $IBU(15 ͷ EFMWF όΠΞε 42 W. Liang, et al. Mapping the Increasing Use of LLMs in Scientific Papers. Proc. CoLM (2024). https://pshapira.net/2024/03/31/delving-into-delve/

Slide 43

Slide 43 text

ࣗ෼Ͱ΋ৼΓฦͬͯΈΔͱ ● ࣗ਎΋Α͘ $IBU(15 ʹӳޠϝʔϧͷจষͳͲΛఴ࡟ͯ͠΋Β͏ ● ͦͯ͠ɺ$IBU(15 Λ࢖͍ͬͯͳ͍ͱ͖ʹ΋ EFMWF ͱ͍͏୯ޠΛ࢖͏บ͕ ఻છ͍ͯ͠Δؾ͕͢Δ ࣮ࡍʹ$IBU(15͕զʑͷίϛϡχέʔγϣϯʹ ͲΜͳมԽΛ΋ͨΒ͍ͯ͠Δͷ͔Λݕূ 43

Slide 44

Slide 44 text

● ੈքͷֶज़ػؔͷ :PV5VCF νϟϯωϧ͔Β ෼Ҏ্ͷಈըສ݅Λऩू͠ॻ͖ى͜͠ ○ ӳޠ฼ޠ࿩ऀΑΓୈೋݴޠ࿩ऀͷ΄͏͕ ӨڹΛड͚ΔͷͰ͸ͳ͍͔ͱ͍͏Ծఆ ○ ΞΧσϛΞ͸͢Ͱʹࣥච౳Ͱ$IBU(15Λ େن໛ʹར༻͍ͯ͠Δ͜ͱ͕໌Β͔ ○ ௕࣌ؒͷϓϨθϯ౳Λ͢΂ͯ$IBU(15Ͱ ݪߘ࡞੒͢ΔՄೳੑ͸௿͘ɺ ൃݴ͸TQPOUBOFPVTͳ಺༰ͱΈͳͤΔ Active institutions on ROR (n=20,662) Institutions with a channel identified (n=16,667) Institution with no channel identified (n=3,995) Videos from the channels (n=2,958,103) Videos with a English title (n=1,613,839) Videos with a non-English title (n=1,344,264) Videos longer than 20 minutes (n=364,916) Videos shorter than 20 minutes (n=1,248,913) Global institutions Videos shorter than 99 percentile (n=361,297) Videos longer than 99 percentile (n=3,619) σʔλऩू 44

Slide 45

Slide 45 text

45

Slide 46

Slide 46 text

● ҎԼͷܗࣜͰ $IBU(15 ެ։ޙͷ มԽྔΛϞσϦϯά ● ݁Ռɺ(15 ʹಛ༗ͱ͞ΕΔ ୯ޠ͸ݦஶͳ૿ՃΛݟͤͨ EFMWF͸Ի੠ίϛϡχέʔγϣϯͰ΋૿͍͑ͯͨ 46

Slide 47

Slide 47 text

ςΩετͰͷ෼ੳͷ݁Ռͱͷؔ࿈ੑ΋֬ೝ ● ͞Βʹطଘݚڀ͕࿦จͷղੳ͔Β ࢉग़ͨ͠୯ޠͷ (15 Β͠͞ͱ ૬ؔ͢Δ܏޲΋֬ೝ ● ࣥචͳͲͷλεΫΛ௨ͯ͠ ਓ͕ؒӨڹ͞Εͨͱ͍͏ܦ࿏Λࣔࠦ 47

Slide 48

Slide 48 text

ΞϑϦΧӳޠ͕ $IBU(15 ܦ༝Ͱશੈքʹ఻೻͍ͯ͠Δʁ ● ͔͠΋͜͏ͨ͠୯ޠ͸έχΞӳޠͳͲͰ Α͘࢖ΘΕ͍ͯΔ͜ͱ΋֬ೝ ● 0QFO"* ͕ΞϊςʔγϣϯΛ҆Ձʹ֎஫ͨ͠ ݁Ռ͕શੈքʹӨڹ͍ͯ͠Δͱ͍͏Մೳੑ΋ 48 https://time.com/6247678/openai-chatgpt-kenya-workers/

Slide 49

Slide 49 text

ώτͱ"*ͷ૬ޓతͳߦಈม༰ͷՄೳੑ "*ʹΑΔ ߦಈม༰ όΠΞε͞Εͨ σʔλͷ஝ੵ ࣍ੈ୅Ϟσϧͷ ৽σʔλͰͷֶश ࣾձ΁ͷ Өڹͷྦྷੵ 👩 🤖 📝 ݴޠදݱ ௌऔߦಈ طଘͷ σʔληοτ ࠓޙͷ σʔληοτ ︙ 📝 📝🤖 🎧 🎧🤖 ︙ 📝🤖 🎧🤖 🤖 🤖 🤖 ✨ ✨ ✨ ︙ 🤖 🤖 🤖 ✨ ✨ ✨ ︙ όΠΞεΛ Ϟσϧ͕ ڧԽ "* ٕज़ͷ΋ͨΒ͔ᷮ͢ͳมԽ͕ɺҙਤͤ͵ํ޲΁ͱ ਓྨશମͷදݱ΍ߦಈΛ༠ಋ͍ͯ͘͠Մೳੑ͕͋Δ 👱 🤖 👩 🤖 📝 ✨ 🤖 ✨ 👱 🤖✨ 🤖 ✨ 49

Slide 50

Slide 50 text

͓·͚ 50

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

"* Λ 5SJDLPS5SFBU ͢ΔήʔϜ "* ͷٖਓԽ͞Εͨײ৘දݱ͕ ਓؒͷߦಈʹ༩͑ΔӨڹΛௐࠪ TQPPLUIFNBDIJOFDPN