Slide 1

Slide 1 text

B SINM : F Jean-Gabriel Young Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA jgyoung.ca @_jgyou May th, Based on joint work with Laurent Hébert-Dufresne and Samuel V. Scarpino

Slide 2

Slide 2 text

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 0.0 2.5 5.0 7.5 New cases (% national) National Influenza data, CDC FluView Portal (WHO & ILINet)

Slide 3

Slide 3 text

At the population level : a longstanding approach Compartmental modeling, e.g. : Susceptible node Infected node Recovered node Infection (rate β) Recovery (rate γ) d dt S −βIS d dt I βIS − γI d dt r γI

Slide 4

Slide 4 text

At the population level : a longstanding approach Well-mixed 0 10 20 t 10−2 10−1 100 Densities I(t) R(t) Heterogeneous networks 0 10 20 t 10−2 10−1 100 Densities I(t) R(t)

Slide 5

Slide 5 text

Challenges to conventional : Two examples ( of ) M : Prudent behavior [ S. V. Scarpino, A. Allard, and L. Hébert-Dufresne, Nature Physics ( )] Replace infected nodes by susceptible nodes

Slide 6

Slide 6 text

Challenges to conventional : Two examples ( of ) M : Prudent behavior [ S. V. Scarpino, A. Allard, and L. Hébert-Dufresne, Nature Physics ( )] Replace infected nodes by susceptible nodes

Slide 7

Slide 7 text

Challenges to conventional wisdom : Two examples ( of ) M : Interaction in clustered networks [ L. Hébert-Dufresne, S. V. Scarpino, and JGY (in preparation)] T diseases in well-mixed populations. Nodes with both become superspreaders.

Slide 8

Slide 8 text

Many-to-one Many mechanistic models lead to outcomes

Slide 9

Slide 9 text

Many-to-one Many mechanistic models lead to outcomes At the population level : We need an effective, mechanism agnostic model

Slide 10

Slide 10 text

Complex SIR model In a well-mixed population Susceptible node Infected node Recovered node Infection (rate β) Recovery (rate γ) d dt S −βIS d dt I βIS − γI d dt r γI Early reference [P. S. Dodds and D. J. Watts, Physical Review Letters , ( )]

Slide 11

Slide 11 text

Complex SIR model In a well-mixed population Susceptible node Infected node Recovered node Infection (rate β) Recovery (rate γ) d dt S −β(I)IS d dt I β(I)IS − γI d dt r γI Early reference [P. S. Dodds and D. J. Watts, Physical Review Letters , ( )]

Slide 12

Slide 12 text

Complex contagion Complex contagion function β(I) 0 1 t 0.0 0.5 1.0 I(t) 0 1 I 0 10 20 β(I)

Slide 13

Slide 13 text

Complex contagion Complex contagion function β(I) 0 25 t 0.0 0.5 I(t) 0 1 I 0 10 20 β(I)

Slide 14

Slide 14 text

Complex contagion Complex contagion function β(I) 0 25 t 0.0 0.5 I(t) 0 1 I 0 10 20 β(I) 0 20 t 0.0 0.2 I(t) 0 1 I 0 10 β(I) 0 25 t 0.0 0.5 I(t) 0 1 I 50 100 β(I) 0 25 t 0 1 I(t) 0 1 I 5.0 7.5 β(I) 0 25 t 0.0 0.5 I(t) 0 1 I 8 10 β(I)

Slide 15

Slide 15 text

I

Slide 16

Slide 16 text

Bayesian inference : Likelihood Hidden dynamics : X1:T : Series of “micro-states” Xt ∈ X(who’s in what state?) Observed : Noisy macro states Y1:T. Ex. : number of infectious w/ Gaussian noise.

Slide 17

Slide 17 text

Bayesian inference : Likelihood Hidden dynamics : X1:T : Series of “micro-states” Xt ∈ X(who’s in what state?) Observed : Noisy macro states Y1:T. Ex. : number of infectious w/ Gaussian noise. L P(Y1:T |β, σ, γ) G ∫ XT P(Y1:T , x1:T , G|β, γ, σ)dx1:T .

Slide 18

Slide 18 text

Bayesian inference : Likelihood Hidden dynamics : X1:T : Series of “micro-states” Xt ∈ X(who’s in what state?) Observed : Noisy macro states Y1:T. Ex. : number of infectious w/ Gaussian noise. L P(Y1:T |β, σ, γ) G ∫ XT P(Y1:T , x1:T , G|β, γ, σ)dx1:T . A Maximal contribution under a mean-field (MF) approximation : P(Y1:T |β, γ, σ) t q(Yt | ˜ yt (β, γ), σ) where q(Yt |y, σ) is the pdf of a Gaussian, and ˜ yt is the MF solution of the dynamics on ensemble P(G).

Slide 19

Slide 19 text

I

Slide 20

Slide 20 text

Complex contagion on a well-mixed population Various level of sub-sampling : 0.00 0.35 0.70 I 0 10 20 30 β(I)/γ t Prevalence 0.00 0.35 0.70 I 0 10 20 30 β(I)/γ t Prevalence 0.00 0.35 0.70 I 0 10 20 30 β(I)/γ t Prevalence Various level of noise : 0.00 0.35 0.70 I 0 10 20 30 β(I)/γ t Prevalence 0.00 0.35 0.70 I 0 10 20 30 β(I)/γ t Prevalence 0.00 0.35 0.70 I 0 10 20 30 β(I)/γ t Prevalence

Slide 21

Slide 21 text

Interacting contagions on networks Structure Time-series Inference 0 10000 20000 t 0.0 0.2 0.4 Prevalence Indep. Coop. 0.00 0.15 0.30 0.45 I 5 10 β(I)/γ 1 3 5 max β(I)/ min β(I) Prob.

Slide 22

Slide 22 text

Reference : arXiv : .xxxxx Code : github.com/jg-you/comp ex-coinfection-inference [email protected] jgyoung.ca @_jgyou

Slide 23

Slide 23 text

Take-home message Mechanistic models : Many-to-one at the population level Complex contagion : universal effective model for prevalence We infer β(I) with a Bayesian mean-field model Reference : arXiv : .xxxxx Software : github.com/jg-you/comp ex-coinfection-inference

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

Bayesian inference : Posterior P β(I) Bernstein polynomials of fixed degree N : β(I) N ν 0 ξν N ν Iν(1 − I)N−ν Represent any function in the limit N → ∞. Nonnegative on [0, 1] if ξν > 0 ∀ν. Prior : ξν ∼ µξ + ∆ν where ∆ν is centered on . 0 25 t 0.0 0.5 I(t) 0 1 I 0 10 20 β(I) 0 20 t 0.0 0.2 I(t) 0 1 I 0 10 β(I) 0 25 t 0.0 0.5 I(t) 0 1 I 50 100 β(I) 0 25 t 0 1 I(t) 0 1 I 5.0 7.5 β(I) 0 25 t 0.0 0.5 I(t) 0 1 I 8 10 β(I)