Slide 1

Slide 1 text

Introduction to Concurrency in Haskell Abhinav Sarkar Functional Conf / Sep 12, 2015

Slide 2

Slide 2 text

I Am Abhinav Sarkar @abhin4v @nilenso

Slide 3

Slide 3 text

Haskell Pure functional programming Strict type system Immutable data structures Good for concurrent programs

Slide 4

Slide 4 text

Real World Scenarios Threads Locks/Synchronization Inter thread communication Asynchronous exceptions Transactions

Slide 5

Slide 5 text

Multiuser Chat

Slide 6

Slide 6 text

Features Users Channels Message and Tell

Slide 7

Slide 7 text

Feature Plan Accept user connections User to user chat User quitting and timeouts (maybe) Channels: joining, leaving and chatting

Slide 8

Slide 8 text

Start!

Slide 9

Slide 9 text

m o d u l e L i n k . T y p e s w h e r e d a t a U s e r = U s e r { u s e r N a m e : : S t r i n g } d e r i v i n g ( S h o w , E q , O r d ) d a t a C l i e n t = C l i e n t { c l i e n t U s e r : : U s e r , c l i e n t H a n d l e : : H a n d l e } d e r i v i n g ( S h o w , E q ) d a t a S e r v e r = S e r v e r { s e r v e r U s e r s : : M V a r ( M a p . M a p U s e r C l i e n t ) }

Slide 10

Slide 10 text

Accept User Connections

Slide 11

Slide 11 text

m o d u l e L i n k . S e r v e r w h e r e i m p o r t L i n k . T y p e s r u n S e r v e r : : I n t - > I O ( ) r u n S e r v e r p o r t = w i t h S o c k e t s D o $ d o h S e t B u f f e r i n g s t d o u t L i n e B u f f e r i n g s e r v e r < - n e w S e r v e r s o c k < - l i s t e n O n . P o r t N u m b e r . f r o m I n t e g r a l $ p o r t p r i n t f " L i s t e n i n g o n p o r t % d \ n " p o r t f o r e v e r $ d o ( h a n d l e , h o s t , p o r t ' ) < - a c c e p t s o c k p r i n t f " A c c e p t e d c o n n e c t i o n f r o m % s : % s \ n " h o s t ( s h o w p o r t ' ) f o r k I O $ c o n n e c t C l i e n t s e r v e r h a n d l e ` f i n a l l y ` h C l o s e h a n d l e

Slide 12

Slide 12 text

Threads Green threads Non blocking IO Memory efficient -threaded ghc option

Slide 13

Slide 13 text

MVar Mutable variable As a container for shared state As a blocking primitive For locks/synchronization

Slide 14

Slide 14 text

c o n n e c t C l i e n t : : S e r v e r - > H a n d l e - > I O ( ) c o n n e c t C l i e n t s e r v e r h a n d l e = d o h S e t N e w l i n e M o d e h a n d l e u n i v e r s a l N e w l i n e M o d e h S e t B u f f e r i n g h a n d l e L i n e B u f f e r i n g r e a d N a m e w h e r e

Slide 15

Slide 15 text

r e a d N a m e : : I O ( ) r e a d N a m e = d o n a m e < - h G e t L i n e h a n d l e i f n u l l n a m e t h e n r e a d N a m e e l s e d o l e t u s e r = U s e r n a m e o k < - c h e c k A d d C l i e n t s e r v e r u s e r h a n d l e c a s e o k o f N o t h i n g - > d o h P r i n t f h a n d l e " T h e n a m e % s i s i n u s e , p l e a s e c h o o s e a n o t h e r \ n " n a m e r e a d N a m e J u s t c l i e n t - > r u n C l i e n t s e r v e r c l i e n t ` f i n a l l y ` r e m o v e C l i e n t s e r v e r u s e r

Slide 16

Slide 16 text

c h e c k A d d C l i e n t : : S e r v e r - > U s e r - > H a n d l e - > I O ( M a y b e C l i e n t ) c h e c k A d d C l i e n t S e r v e r { . . } u s e r @ U s e r { . . } h a n d l e = m o d i f y M V a r s e r v e r U s e r s $ \ c l i e n t M a p - > i f M a p . m e m b e r u s e r c l i e n t M a p t h e n r e t u r n ( c l i e n t M a p , N o t h i n g ) e l s e d o c l i e n t < - C l i e n t u s e r h a n d l e p r i n t f " N e w u s e r c o n n e c t e d : % s \ n " u s e r N a m e r e t u r n ( M a p . i n s e r t u s e r c l i e n t c l i e n t M a p , J u s t c l i e n t ) r e m o v e C l i e n t : : S e r v e r - > U s e r - > I O ( ) r e m o v e C l i e n t S e r v e r { . . } u s e r = m o d i f y M V a r _ s e r v e r U s e r s $ r e t u r n . M a p . d e l e t e u s e r

Slide 17

Slide 17 text

User to User Chat

Slide 18

Slide 18 text

m o d u l e L i n k . T y p e s w h e r e d a t a C l i e n t = C l i e n t { c l i e n t U s e r : : U s e r , c l i e n t H a n d l e : : H a n d l e , c l i e n t C h a n : : C h a n M e s s a g e } d a t a M e s s a g e = M s g U s e r S t r i n g d e r i v i n g ( S h o w , E q )

Slide 19

Slide 19 text

m o d u l e L i n k . P r o t o c o l w h e r e i m p o r t L i n k . T y p e s p a r s e C o m m a n d : : S t r i n g - > M a y b e M e s s a g e p a r s e C o m m a n d c o m m a n d = c a s e w o r d s c o m m a n d o f " M S G " : u s e r N a m e : m s g - > J u s t $ M s g ( U s e r u s e r N a m e ) ( u n w o r d s m s g ) _ - > N o t h i n g f o r m a t M e s s a g e : : M e s s a g e - > S t r i n g f o r m a t M e s s a g e ( M s g u s e r m s g ) = p r i n t f " M S G % s % s " ( u s e r N a m e u s e r ) m s g

Slide 20

Slide 20 text

Chans Unbounded blocking queues

Slide 21

Slide 21 text

r u n C l i e n t : : S e r v e r - > C l i e n t - > I O ( ) r u n C l i e n t S e r v e r { . . } C l i e n t { . . } = f o r e v e r $ d o r < - t r y $ r a c e r e a d C o m m a n d r e a d M e s s a g e c a s e r o f L e f t ( e : : S o m e E x c e p t i o n ) - > p r i n t f " E x c e p t i o n : % s \ n " ( s h o w e ) R i g h t c m - > c a s e c m o f L e f t m c o m m a n d - > c a s e m c o m m a n d o f N o t h i n g - > p r i n t f " C o u l d n o t p a r s e c o m m a n d \ n " J u s t c o m m a n d - > h a n d l e C o m m a n d c o m m a n d R i g h t m e s s a g e - > h a n d l e M e s s a g e m e s s a g e w h e r e

Slide 22

Slide 22 text

r e a d C o m m a n d : : I O ( M a y b e M e s s a g e ) r e a d C o m m a n d = d o c o m m a n d < - h G e t L i n e c l i e n t H a n d l e p r i n t f " < % s > : % s \ n " ( u s e r N a m e c l i e n t U s e r ) c o m m a n d r e t u r n $ p a r s e C o m m a n d c o m m a n d r e a d M e s s a g e : : I O M e s s a g e r e a d M e s s a g e = r e a d C h a n c l i e n t C h a n s e n d M e s s a g e : : M e s s a g e - > I O ( ) s e n d M e s s a g e m e s s a g e = w r i t e C h a n c l i e n t C h a n

Slide 23

Slide 23 text

h a n d l e C o m m a n d : : M e s s a g e - > I O ( ) h a n d l e C o m m a n d ( M s g u s e r m s g ) = c l i e n M a p < - r e a d M V a r s e r v e r U s e r s c a s e M a p . l o o k u p u s e r c l i e n t M a p o f N o t h i n g - > p r i n t f " N o s u c h u s e r : % s \ n " ( u s e r N a m e u s e r ) J u s t c l i e n t - > s e n d M e s s a g e ( M s g c l i e n t U s e r m s g ) c l i e n t h a n d l e M e s s a g e : : M e s s a g e - > I O ( ) h a n d l e M e s s a g e = p r i n t T o H a n d l e c l i e n t H a n d l e . f o r m a t M e s s a g e

Slide 24

Slide 24 text

r a c e : : I O a - > I O b - > I O ( E i t h e r a b ) r a c e i o a i o b = d o m < - n e w E m p t y M V a r b r a c k e t ( f o r k I O ( f m a p L e f t i o a ) ( p u t M V a r m ) ) k i l l T h r e a d $ \ _ - > b r a c k e t ( f o r k I O ( f m a p R i g h t i o b ) ( p u t M V a r m ) ) k i l l T h r e a d $ \ _ - > r e a d M V a r m

Slide 25

Slide 25 text

MVar For inter thread communication

Slide 26

Slide 26 text

Chatting in Channels

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

Software Transactional Memory

Slide 30

Slide 30 text

Why Transactions? Atomic changes to multiple variables Read from multiple channels efficiently Robustness in the presence of failure

Slide 31

Slide 31 text

m o d u l e L i n k . T y p e s w h e r e t y p e U s e r N a m e = S t r i n g t y p e C h a n n e l N a m e = S t r i n g d a t a U s e r = U s e r { u s e r N a m e : : ! U s e r N a m e } d e r i v i n g ( S h o w , E q , O r d ) d a t a C h a n n e l = C h a n n e l { c h a n n e l N a m e : : C h a n n e l N a m e , c h a n n e l U s e r s : : T V a r ( S e t . S e t U s e r ) , c h a n n e l C h a n : : T C h a n M e s s a g e }

Slide 32

Slide 32 text

d a t a S e r v e r = S e r v e r { s e r v e r U s e r s : : M V a r ( M a p . M a p U s e r C l i e n t ) , s e r v e r C h a n n e l s : : T V a r ( M a p . M a p C h a n n e l N a m e C h a n n e l ) } d a t a C l i e n t = C l i e n t { c l i e n t U s e r : : ! U s e r , c l i e n t H a n d l e : : ! H a n d l e , c l i e n t C h a n : : T C h a n M e s s a g e , c l i e n t C h a n n e l C h a n s : : T V a r ( M a p . M a p C h a n n e l N a m e ( T C h a n M e s s a g e ) ) }

Slide 33

Slide 33 text

d a t a M e s s a g e = M s g U s e r S t r i n g | T e l l C h a n n e l N a m e S t r i n g | J o i n C h a n n e l N a m e | L e a v e C h a n n e l N a m e | M s g R e p l y U s e r S t r i n g | T e l l R e p l y C h a n n e l N a m e U s e r S t r i n g | J o i n e d C h a n n e l N a m e U s e r | L e a v e d C h a n n e l N a m e U s e r d e r i v i n g ( S h o w , E q )

Slide 34

Slide 34 text

STM Monad A monad of its own Type system prevents doing IO

Slide 35

Slide 35 text

TVar TVar: Transactional variable n e w T V a r : : a - > S T M ( T V a r a ) r e a d T V a r : : T V a r a - > S T M a w r i t e T V a r : : T V a r a - > a - > S T M ( ) a t o m i c a l l y : : S T M a - > I O a r e t r y : : S T M a

Slide 36

Slide 36 text

TChan Transactional channels Efficient merging n e w T C h a n : : S T M ( T C h a n a ) w r i t e T C h a n : : T C h a n a - > a - > S T M ( ) r e a d T C h a n : : T C h a n a - > S T M a o r E l s e : : S T M a - > S T M a - > S T M a

Slide 37

Slide 37 text

r u n C l i e n t : : S e r v e r - > C l i e n t - > I O ( ) r u n C l i e n t S e r v e r { . . } c l i e n t @ C l i e n t { . . } = d o c o m m a n d T h r e a d < - f o r k I O $ r e a d C o m m a n d s r u n ` f i n a l l y ` d o k i l l T h r e a d c o m m a n d T h r e a d c l i e n t C h a n n e l M a p < - r e a d T V a r I O c l i e n t C h a n n e l C h a n s f o r M _ ( M a p . k e y s c l i e n t C h a n n e l M a p ) $ \ c h a n n e l N a m e - > h a n d l e M e s s a g e ( L e a v e c h a n n e l N a m e ) w h e r e

Slide 38

Slide 38 text

r u n : : I O ( ) r u n = f o r e v e r $ d o r < - t r y . a t o m i c a l l y $ d o c l i e n t C h a n n e l M a p < - r e a d T V a r c l i e n t C h a n n e l C h a n s f o l d r ( o r E l s e . r e a d T C h a n ) r e t r y $ c l i e n t C h a n : M a p . e l e m s c l i e n t C h a n n e l M a p c a s e r o f L e f t ( e : : S o m e E x c e p t i o n ) - > p r i n t f " E x c e p t i o n : % s \ n " ( s h o w e ) R i g h t m e s s a g e - > h a n d l e M e s s a g e m e s s a g e r e a d C o m m a n d s : : I O ( ) r e a d C o m m a n d s = f o r e v e r $ d o c o m m a n d < - h G e t L i n e c l i e n t H a n d l e p r i n t f " < % s > : % s \ n " ( u s e r N a m e c l i e n t U s e r ) c o m m a n d c a s e p a r s e C o m m a n d c o m m a n d o f N o t h i n g - > p r i n t f " C o u l d n o t p a r s e c o m m a n d : % s \ n " c o m m a n d J u s t c - > s e n d M e s s a g e I O c l i e n t c

Slide 39

Slide 39 text

h a n d l e M e s s a g e : : M e s s a g e - > I O ( ) h a n d l e M e s s a g e ( J o i n c h a n n e l N a m e ) = a t o m i c a l l y $ d o c l i e n t C h a n n e l M a p < - r e a d T V a r c l i e n t C h a n n e l C h a n s - - g e t u s e r ' s c h a n n e l s - - i f u s e r h a s n o t a l r e a d y j o i n e d t h e c h a n n e l u n l e s s ( M a p . m e m b e r c h a n n e l N a m e c l i e n t C h a n n e l M a p ) $ d o c h a n n e l M a p < - r e a d T V a r s e r v e r C h a n n e l s - - g e t s e r v e r c h a n n e l s c h a n n e l @ C h a n n e l { c h a n n e l C h a n } < - c a s e M a p . l o o k u p c h a n n e l N a m e c h a n n e l M a p o f J u s t ( c h a n n e l @ C h a n n e l { c h a n n e l U s e r s } ) - > d o - - i f t h e c h a n n e l a l r e a d y e x i s t s o n t h e s e r v e r , a d d u s e r t o i t m o d i f y T V a r ' c h a n n e l U s e r s $ S e t . i n s e r t c l i e n t U s e r r e t u r n c h a n n e l N o t h i n g - > d o - - e l s e c r e a t e a n e w c h a n n e l w i t h t h i s u s e r i n i t a n d a d d i t t o t h e s e r v e r c h a n n e l < - n e w C h a n n e l c h a n n e l N a m e $ S e t . s i n g l e t o n c l i e n t U s e r m o d i f y T V a r ' s e r v e r C h a n n e l s $ M a p . i n s e r t c h a n n e l N a m e c h a n n e l r e t u r n c h a n n e l - - d u p l i c a t e c h a n n e l T C h a n f o r t h i s u s e r a n d a d d i t t o t h e u s e r s ' s c h a n n e l s c l i e n t C h a n n e l C h a n < - d u p T C h a n c h a n n e l C h a n m o d i f y T V a r ' c l i e n t C h a n n e l C h a n s $ M a p . i n s e r t c h a n n e l N a m e c l i e n t C h a n n e l C h a n - - s e n d a J O I N E D m e s s a g e t o t h e c h a n n e l f o r t h i s u s e r t e l l M e s s a g e c h a n n e l $ J o i n e d c h a n n e l N a m e c l i e n t U s e r

Slide 40

Slide 40 text

High Level Design

Slide 41

Slide 41 text

High Level Design Threads are cheap. Don't be afraid to launch new threads. Non blocking IO. No need of event loops. Small components connected through channels Write small functions in STM and compose them

Slide 42

Slide 42 text

High Level Design Structure programs like assembly lines Processing functions read from and write to channels Channels connect processing functions like conveyor belts Channels can be duplicated and merged

Slide 43

Slide 43 text

That's All Folks

Slide 44

Slide 44 text

References Parallel and Concurrent Programming in Haskell - Simon Marlow Real World Haskell - O'Sullivan, Stewart, Goerzen

Slide 45

Slide 45 text

https://github.com/abhin4v/link https://tinyurl.com/introconchs @abhin4v [email protected]

Slide 46

Slide 46 text

Questions?