Slide 1

Slide 1 text

THE COMPARATIVE GENOMICS OF ‘ANCIENT ASEXUALITY’ AND HYBRIDIZATION IN ROOT KNOT NEMATODES Dave Lunt Evolutionary Biology Group, University of Hull

Slide 2

Slide 2 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES Dave Lunt Evolutionary Biology Group, University of Hull Institute of Evolutionary Biology, University of Edinburgh Georgios Koutsovoulos Mark Blaxter Sujai Kumar

Slide 3

Slide 3 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES Acknowledgements Africa Gómez, Richard Ennos, Amir Szitenberg, Karim Gharbi, Chris Mitchell, Steve Moss, Tom Powers, Janete Brito, Etienne Danchin, Marian Thomson & GenePool Funding NERC, BBSRC, Yorkshire Agricultural Society, Nuffield Foundation, University of Hull, University of Edinburgh

Slide 4

Slide 4 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES Dave Lunt davelunt.net @davelunt [email protected] @EvoHull +EvoHull +davelunt Evolutionary Biology Group, University of Hull http://www.github.com/davelunt

Slide 5

Slide 5 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES WHAT’S IN A GENOME & WHY?

Slide 6

Slide 6 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES WHAT’S IN A GENOME & WHY? mostly transposons, repeats, & sequences of incertae sedis For many eukaryotes: but why?

Slide 7

Slide 7 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES SEM Meloidogyne female WHAT’S IN A GENOME & WHY? Evolutionary Forces: Selection Gene Flow Mutation Drift Recombination

Slide 8

Slide 8 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES Studying Recombination Study its effects in genomic regions with reduced recombination • sex chromosomes • inversions Study its action in species that have lost meiotic recombination • asexuals A B C D E F sexual asexual origin of asexuality asexual

Slide 9

Slide 9 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES Studying Recombination Mitotic reproduction has consequences for the genome • decay of sex-specific genes • extreme Allelic Sequence Divergence • loss of mutational effects of recombination A B C D E F sexual asexual origin of asexuality asexual

Slide 10

Slide 10 text

THE MELOIDOGYNE RKN SYSTEM Meloidogyne Root Knot Nematodes • Globally important agricultural pest species • Enormous plant host range • parasitize all main crop plants • ~5% loss of world agriculture JD Eisenback RKN juveniles enter root tip infected uninfected SEM Meloidogyne female JD Eisenback

Slide 11

Slide 11 text

THE MELOIDOGYNE RKN SYSTEM Meloidogyne Reproduction • Wide variety of reproductive modes in a single genus • Many species are mitotic parthenogens without chromosome pairs • Incapable of meiosis • Could be ‘ancient’ asexuals • 17 million years without meiosis?

Slide 12

Slide 12 text

THE MELOIDOGYNE RKN SYSTEM Meloidogyne Reproduction • Wide variety of reproductive modes in a single genus • Many species are mitotic parthenogens without chromosome pairs • Other species are meiotic parthenogens • automixis

Slide 13

Slide 13 text

THE MELOIDOGYNE RKN SYSTEM Meloidogyne Reproduction • Wide variety of reproductive modes in a single genus • Many species are mitotic parthenogens without chromosome pairs • Some species are obligatory outbreeding sexuals with males & females • amphimixis • Other species are meiotic parthenogens

Slide 14

Slide 14 text

THE MELOIDOGYNE RKN SYSTEM Meloidogyne Reproduction • Wide variety of reproductive modes in a single genus

Slide 15

Slide 15 text

MELOIDOGYNE REPRODUCTION Are RKN Ancient Asexuals? Investigations based on multi-species single gene sequencing and phylogenetics: •testing for extreme allelic sequence divergence •testing for changes in molecular evolution pattern of sex-specific loci Lunt DH 2008 BMC Evolutionary Biology 8:194

Slide 16

Slide 16 text

RECOMBINATION AND ASEXUALITY Extreme Allelic Sequence Divergence "If we suppose an ameiotic form evolving for a very long period of time we might imagine its two chromosome sets becoming completely unlike, so that it could no longer be considered as a diploid either in a genetical or cytological sense." Sometimes called Meselson effect, similar to paralogous loci A B C D E F sexual asexual origin of asexuality asexual MJD White ‘Animal Cytology and Evolution’ 1st ed 1945, p283

Slide 17

Slide 17 text

RECOMBINATION AND ASEXUALITY Extreme Allelic Sequence Divergence A B C D E F sexual asexual origin of asexuality asexual

Slide 18

Slide 18 text

RECOMBINATION AND ASEXUALITY loss of meiosis A B C D E F Extreme Asexual ASD alleles taxon Recent Ancient 1 2 3 asexual sexual asexual Redrawn after Birky 1996 Divergence between alleles of sexual species Divergence between asexual species ‘alleles’ alleles by recom bination m eiosis hom ogenizes

Slide 19

Slide 19 text

THE SIGNATURES OF ANCIENT ASEXUALITY Extreme allelic sequence divergence Allelic Sequence Divergence levels are much greater in asexuals Meloidogyne than sexual Meloidogyne Pi (nucleotide diversity) Sexual Asexual apomicts | Species Max intraspecific substitutions Substitutions to closest relative M. incognita 15 0 M. javanica M. javanica 16 0 M. incognita RNA polymerase II Dystrophin Species Max intraspecific substitutions Substitutions to closest relative M. javanica 30 0 M. arenaria M. arenaria 32 0 M. javanica M.javanica M.javanica M.javanica M.arenaria M.javanica M.javanica M.javanica M.incognita

Slide 20

Slide 20 text

THE SIGNATURES OF ANCIENT ASEXUALITY Extreme allelic sequence divergence ASD can be very large within asexual individuals Pi (nucleotide Sex Asexual | Species Max intraspecific substitutions Substitutions to closest relative M. incognita 15 0 M. javanica M. javanica 16 0 M. incognita RNA polymerase II Dystrophin Species Max intraspecific substitutions Substitutions to closest relative M. javanica 30 0 M. arenaria M. arenaria 32 0 M. javanica M.javanica M.javanica M.javanica M.arenaria M.javanica M.javanica M.javanica M.incognita Yet identical alleles can be found between different species

Slide 21

Slide 21 text

THE SIGNATURES OF ANCIENT ASEXUALITY Extreme allelic sequence divergence Lunt DH 2008 BMC Evolutionary Biology 8:194 Pi (nucleotide Sex Asexual | Species Max intraspecific substitutions Substitutions to closest relative M. incognita 15 0 M. javanica M. javanica 16 0 M. incognita RNA polymerase II Dystrophin Species Max intraspecific substitutions Substitutions to closest relative M. javanica 30 0 M. arenaria M. arenaria 32 0 M. javanica M.javanica M.javanica M.javanica M.arenaria M.javanica M.javanica M.javanica M.incognita This allele sharing is not predicted by ancient asexuality, and suggests interspecific hybridization

Slide 22

Slide 22 text

RECOMBINATION AND ASEXUALITY loss of meiosis A B C D E F Extreme Asexual ASD alleles taxon Recent Ancient 1 2 3 asexual sexual asexual Redrawn after Birky 1996 Divergence between alleles of sexual species Divergence between asexual species ‘alleles’ alleles by recom bination m eiosis hom ogenizes

Slide 23

Slide 23 text

RECOMBINATION AND ASEXUALITY A B A D C Extreme Hybrid ASD Alleles Taxa Recent Ancient Sexual parental species Redrawn after Birky 1996 Divergence between alleles of parental species Divergence between hybrid species alleles m eiosis hom ogenizes alleles by recom bination A C D Ancestor of sexual parental species Hybridization event meiosis homogenizes alleles Sexual parental species hybrid apomict hybrid apomict mitotic

Slide 24

Slide 24 text

TESTING ANCIENT ASEXUALITY Sex Specific Loci Electron microscope images from Ward lab, http:// www.mcb.arizona.edu/wardlab/ • Nematodes have amoeboid (crawling) sperm • msp genes only expressed in sperm and spermatocytes • Structural protein of sperm • Signal to recommence meiosis • Prediction: msp gene should show signatures of loss of function (pseudogenization) in asexuals Major Sperm Protein

Slide 25

Slide 25 text

msp intron diversity in asexuals 14 Mutations are not randomly distributed but cluster within the intron, exactly as for functional genes Selection on this gene cannot have been abandoned anciently

Slide 26

Slide 26 text

msp intron diversity in asexuals 14 ML models of evolution are identical on sexual and asexual branches of tree Selection on this gene cannot have been abandoned anciently

Slide 27

Slide 27 text

MELOIDOGYNE REPRODUCTION Previous Single Gene Sequencing I can reject ancient asexuality on basis of interspecific allele sharing and identical molecular evolution of sperm protein genes Data suggests interspecific hybrid origins Lunt DH 2008 BMC Evolutionary Biology 8:194

Slide 28

Slide 28 text

MELOIDOGYNE HYBRIDIZATION Hybrid Speciation • Once thought that hybrid speciation was rare and inconsequential in animals • Genome biology is revealing a very different view • We have investigated the origins of Meloidogyne asexuals in this context

Slide 29

Slide 29 text

Is M. floridensis the parent of the asexuals? M. floridensis is found within the phylogenetic diversity of asexual species It reproduces sexually by automixis Could it be a parent of the asexual lineages via interspecific hybridization? MELOIDOGYNE HYBRIDIZATION GENOMICS M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict

Slide 30

Slide 30 text

Is M. floridensis the parent of the asexuals? Investigated using whole genome sequences and 2 distinct approaches; --look at the within-genome patterns of diversity to determine hybrid nature of genomes --look at phylogenetic relationships of all genes to study origins and parents MELOIDOGYNE HYBRIDIZATION GENOMICS M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict

Slide 31

Slide 31 text

MELOIDOGYNE HYBRIDIZATION GENOMICS Meloidogyne comparative genomics We have sequenced M. floridensis genome and are able to compare to 2 other Meloidogyne genomes published by other groups M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict asexual, hybrid? sexual, parental? sexual, outgroup

Slide 32

Slide 32 text

MELOIDOGYNE COMPARATIVE GENOMICS The Meloidogyne floridensis genome • 100Mb assembly ~100x genomic coverage • 15.3k predicted proteins • Directly comparable to published Meloidogyne genomes Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163

Slide 33

Slide 33 text

MELOIDOGYNE COMPARATIVE GENOMICS Comparative genomics questions Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • Is there evidence of hybrid origins of asexual species? • Nature of hybridization? • Is M. floridensis a parental? • How do offspring and parental genomes differ?

Slide 34

Slide 34 text

INTRA-GENOMIC ANALYSES ID of duplicated protein-coding regions Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • Coding sequences from each of the three target genomes (M. hapla, M. incognita and M. floridensis) were compared to the set of genes from the same species • The percent identity of the best matching (non-self) coding sequence was calculated, and is plotted as a frequency histogram • Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not Self identity comparisons

Slide 35

Slide 35 text

INTRA-GENOMIC ANALYSES ID of duplicated protein-coding regions Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • Coding sequences from each of the three target genomes (M. hapla, M. incognita and M. floridensis) were compared to the set of genes from the same species • The percent identity of the best matching (non-self) coding sequence was calculated, and is plotted as a frequency histogram • Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not Self identity comparisons

Slide 36

Slide 36 text

INTRA-GENOMIC ANALYSES ID of duplicated protein-coding regions Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • Coding sequences from each of the three target genomes (M. hapla, M. incognita and M. floridensis) were compared to the set of genes from the same species • The percent identity of the best matching (non-self) coding sequence was calculated, and is plotted as a frequency histogram • Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not Self identity comparisons

Slide 37

Slide 37 text

INTRA-GENOMIC ANALYSES ID of duplicated protein-coding regions Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 Self identity comparisons • Both M. incognita and M. floridensis contain diverged gene copies. • These loci duplicated at approximately the same point in time. • A ploidy change is not involved. • This is expected pattern for hybrid genomes

Slide 38

Slide 38 text

COMPARATIVE GENOMICS M. floridensis Genome Size Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • Assembly size is not haploid genome size for hybrid species • Divergence (4-8%) between homeologous (hybrid) copies will preclude assembly • Our assembly of 100Mb is ~2x 50-54Mb genome size of M. hapla

Slide 39

Slide 39 text

HYBRIDIZATION HYPOTHESES Hybridization Hypotheses Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 There are very many ways species could hybridize, duplicate genes, lose genes We have selected a broad range of possibilities informed by prior knowledge We have tested their predictions phylogenetically M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y D

Slide 40

Slide 40 text

39 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 Z M. incognita Z+Z 1 & 2 X+Y M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 Z M. incognita +Z X+Y M. hapla X Y M. floridensis X+Y C Scenario 4 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla D M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 Hybridization hypotheses A B C D

Slide 41

Slide 41 text

M. hapla X M. floridensis X B Scenario M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 (A) Whole genome duplication(s)

Slide 42

Slide 42 text

41 M. hapla X M. floridensis X+Y C Scena M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. incognita Z (B) M. incognita is an interspecific hybrid with M. floridensis as one parent

Slide 43

Slide 43 text

M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y M. florid X+Y D Scenario X+Y (C) M. incognita and M. floridensis are independent hybrids sharing one parent

Slide 44

Slide 44 text

Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 X+Y (D) M. floridensis is a hybrid and M. incognita is a secondary hybrid between M. floridensis and a 3rd parent

Slide 45

Slide 45 text

HYBRIDIZATION HYPOTHESES Testing by Phylogenomics Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 M. hapla M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y D • Coding sequences from 3 genomes were placed into orthologous groups (InParanoid) • 4018 ortholog clusters included all 3 species • We retained those with a single copy in the outgroup M. hapla • Phylogenies of relationships between Mi and Mf gene copies (RAxML) • Trees were parsed and pooled to represent frequencies of different relationships

Slide 46

Slide 46 text

45 Each tree contains a single M. hapla sequence as outgroup (black square) Grey square indicates relative frequency of those topologies Trees are pooled within squares into different patterns of relationships Grid squares represent different numbers of gene copies

Slide 47

Slide 47 text

HYBRIDIZATION HYPOTHESES Testing by Phylogenomics Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 M. hapla M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y D • We assess the fit of the tree topologies to our hypotheses • Five out of seven cluster sets, and 95% of all trees, support hybrid origins for both M. floridensis and M. incognita • ie exclude hypotheses A and B • Hypothesis C best explains 17 trees • Hypothesis D best explains 1335 trees

Slide 48

Slide 48 text

HYBRIDIZATION HYPOTHESES Testing by Phylogenomics Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y A M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y C • The genome data supports both M. incognita and M. floridensis as interspecific hybrids • M. floridensis is a parental species of “double hybrid” M. incognita with other parent unknown M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 X Z M. floridensis M. incognita X X+Z B Scenario 3 X+Y Hypothesis D

Slide 49

Slide 49 text

MELOIDOGYNE COMPARATIVE GENOMICS Comparative genomics questions Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • Is there evidence of hybrid speciation? • Yes, complex hybrid origins are clear • Is M. floridensis a parental? • Yes, identified by phylogenomics and allelic sequence identity • How do offspring and parental genomes differ? What are the broader implications? • Ongoing work...

Slide 50

Slide 50 text

MELOIDOGYNE COMPARATIVE GENOMICS Ongoing Work Lunt et al arXiv 2013 http://arxiv.org/abs/1306.6163 • 19 genomes in a phylogenetic design • Testing effect of recombination & breeding system on genome change • hybrids, inbred, outbred, loss of meiosis • TEs, mutational patterns, gene families Current NERC grant on Meloidogyne breeding system and genome evolution Recombination and genomic rates and patterns of molecular evolution

Slide 51

Slide 51 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES SEM Meloidogyne female Dave Lunt JD Eisenback JD Eisenback juveniles enter root tip Evolutionary Biology Group, University of Hull

Slide 52

Slide 52 text

COMPLEX HYBRID ORIGINS OF ROOT KNOT NEMATODES SEM Meloidogyne female Dave Lunt JD Eisenback JD Eisenback juveniles enter root tip Evolutionary Biology Group, University of Hull davelunt.net @davelunt [email protected] @EvoHull +EvoHull +davelunt http://www.github.com/davelunt