Slide 1

Slide 1 text

Mengoptimalkan Pengalaman Pengguna dengan Sistem Rekomendasi Machine Learning Mochamad Rafy Ardhanie Curriculum Developer

Slide 2

Slide 2 text

Key Point Machine Learning ● Pengenalan sistem rekomendasi ● Ragam sistem rekomendasi ● Content based filtering ● Collaborative filtering ● Hybrid Recommender ● Be a friend with math ● Code for lyfe

Slide 3

Slide 3 text

Machine Learning

Slide 4

Slide 4 text

Machine Learning

Slide 5

Slide 5 text

Machine Learning

Slide 6

Slide 6 text

Machine Learning

Slide 7

Slide 7 text

Pengenalan Sistem Rekomendasi Machine Learning

Slide 8

Slide 8 text

Machine Learning Sistem Rekomendasi A system that predicts ratings or preferences a user might give to a product. Often these are sorted and presented as “top-N'' recommendations. Also known as recommender engines, recommendation systems, and recommendation platforms

Slide 9

Slide 9 text

Machine Learning Mengapa Sistem Rekomendasi itu Penting?

Slide 10

Slide 10 text

Machine Learning Perusahaan Pengguna

Slide 11

Slide 11 text

Machine Learning

Slide 12

Slide 12 text

Machine Learning https://atrium.ai/resources/what-are-recommendation-systems-and-how-are-they-transforming-our-markets/

Slide 13

Slide 13 text

Machine Learning

Slide 14

Slide 14 text

Machine Learning Meningkatkan Penjualan Mengapa Sistem Rekomendasi itu Penting? Penjualan Beragam Kepuasan Pelanggan Personalisasi

Slide 15

Slide 15 text

Ragam Sistem Rekomendasi Machine Learning

Slide 16

Slide 16 text

Machine Learning

Slide 17

Slide 17 text

Machine Learning Non-Personalized Recommender System

Slide 18

Slide 18 text

Machine Learning Best-Seller People who X also Y Most Popular Best-Liked Trending Hot Non-Personalized Recommender System

Slide 19

Slide 19 text

Machine Learning Personalized Recommender System Personalized Collaborative Filtering Content-Based Filtering User Based Item Based Hybrid Method Matrix Factorization Deep Learning Memory Based Model Based

Slide 20

Slide 20 text

Content-Based Filtering Machine Learning

Slide 21

Slide 21 text

Machine Learning Content-Based Filtering

Slide 22

Slide 22 text

Machine Learning Content-Based Filtering

Slide 23

Slide 23 text

Machine Learning Content-Based Filtering A.B = (1*1)+(1*1)+(1*1)+(0*0)+(0*0) ||A|| = √12+12+12 =1 ||B|| = √12+12+12 =1 Cosine Similarity = 1

Slide 24

Slide 24 text

Machine Learning Content-Based Filtering Genre: Action = [1, 0], Adventure = [0, 1] Platform: PC = [1, 0], Console = [0, 1] Rating: nilai rating itu sendiri Game A: [1, 0, 1, 0, 4.5] Game B: [1, 0, 0, 1, 4.0] Game C: [0, 1, 1, 0, 3.5]

Slide 25

Slide 25 text

Machine Learning Content-Based Filtering

Slide 26

Slide 26 text

Machine Learning Content-Based Filtering

Slide 27

Slide 27 text

Collaborative Filtering Machine Learning

Slide 28

Slide 28 text

Machine Learning Collaborative Filtering

Slide 29

Slide 29 text

User-Based

Slide 30

Slide 30 text

Item-Based

Slide 31

Slide 31 text

Model-Based Cluster Based Matrix Factorization Deep Learning

Slide 32

Slide 32 text

Hybrid Recommender System Machine Learning

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

Machine Learning

Slide 35

Slide 35 text

Hybrid Recommender System Mixed Weight Switching

Slide 36

Slide 36 text

Be a Friend with Math Machine Learning

Slide 37

Slide 37 text

Similarity Measure Bagaimana Anda mendefinisikan kesamaan (kemiripan) ini? Kesamaan paling umum yang bisa diukur dalam sistem rekomendasi antara lain, preferensi dan selera. Selain itu kesamaan juga dapat ditemukan melalui data dan informasi lain seperti demografi pengguna dan status sosial.

Slide 38

Slide 38 text

Jaccard Distance Teknik ini menghitung seberapa dekat jarak antara dua set sampel. Dalam hal ini, set sampel bisa berupa sekumpulan restoran yang disukai pengunjung. Koefisien ini mengukur kesamaan dengan menghitung irisan antara sampel dibagi dengan gabungan sampel.

Slide 39

Slide 39 text

Cosine Similarity Cosine similarity mengukur kesamaan antara dua vektor dan menentukan apakah kedua vektor tersebut menunjuk ke arah yang sama. Ia menghitung sudut cosinus antara dua vektor. Semakin kecil sudut cosinus, semakin besar nilai cosine similarity.

Slide 40

Slide 40 text

Euclidean Distance Metode Euclidean distance dihitung berdasarkan jarak antara dua titik (item). Item serupa letaknya akan berdekatan satu sama lain jika diplot dalam ruang berdimensi-n.

Slide 41

Slide 41 text

Code for Lyfe

Slide 42

Slide 42 text

Thank You Rafyardhani [email protected] Rafyardhani RafyArdhanie Machine Learning

Slide 43

Slide 43 text

Feedback! Hadiah: ● 1 Token Langganan Academy 30 Hari) *untuk pengisi feedback terpilih! dicoding.id/devcoachfeedback