Slide 1

Slide 1 text

NATURAL LANGUAGE PROCESSING

Slide 2

Slide 2 text

> > I’M > > ___ ___ _____ _____ ___ _ _ > | \/ || ___| __ \ / _ \ | \ | | > | . . || |__ | | \// /_\ \| \| | > | |\/| || __|| | __ | _ || . ` | > | | | || |___| |_\ \| | | || |\ | > \_| |_/\____/ \____/\_| |_/\_| \_/ > > _____ ______ _____ _____ ______ > / ___|| ___ \| ___|_ _|| ___ \ > \ `--.|| |_/ /| |__ | | || |_/ / > `--. \| __/ | __| | | || / > /\__/ /| | | |___ _| |_|| |\ \ > \____/ \_| \____/ \___/ \_| \_| > > > [email protected] > > > > >

Slide 3

Slide 3 text

MORGAN

Slide 4

Slide 4 text

PROBLEM? What did people really think about my event? Discover the truth with Morgan’s Twitter Sentiment Analysis

Slide 5

Slide 5 text

NAÏVE BAYES CLASSIFIER A Naïve Bayesian classifier assumes probabilities being combined are independent of each other. Not true considering python (the snake) and python (the language) mean different things given the context.

Slide 6

Slide 6 text

To make up for its naïveté, calculate the probability of a tweet being in a specific category by multiplying together all the probabilities  of the individual words in a tweet. Love Hate Excited Bored 0 20 40 60 80 Negative Positive

Slide 7

Slide 7 text

EXAMPLES Positive: #FBGGD Negative: #McDstories Neutral: @jack

Slide 8

Slide 8 text

THE STACK Python, Flask, PostgreSQL, nginx, uWSGI, Twitter API Bootstrap, CSS, Javascript, D3.js

Slide 9

Slide 9 text

CHALLENGES The Twitter API Humans

Slide 10

Slide 10 text

RESOURCES You can do it too! ! http.www.laurentluce.com/posts/
 twitter-sentiment-analysis-using-python-and-nltk

Slide 11

Slide 11 text

> > > > _____ _ _ ___ _ _ _ __ > |_ _| | | | / _ \ | \ | || | / / > | | | |_| |/ /_\ \| \| || |/ / > | | | _ || _ || . ` || \ > | | | | | || | | || |\ || |\ \ > \_/ \_| |_/\_| |_/\_| \_/\_| \_/ > > __ _______ _ _ > \ \ / / _ | | | | > \ V /| | | | | | | > \ / | | | | | | | > | | \ \_/ / |_| | > \_/ \___/ \___/ > > > [email protected] > > > > Copyright © 2013 Megan Speir. All rights reserved. >