Slide 24
Slide 24 text
@nyghtowl
● Neural Turing Machines http://arxiv.org/pdf/1410.5401v2.pdf (Graves et al., 2014)
● Reinforcement Learning NTM http://arxiv.org/pdf/1505.00521v1.pdf (Zaremba et al., 2015)
● End-To-End Memory Network http://arxiv.org/pdf/1503.08895v4.pdf (Sukhbaatar et al., 2015)
● Recurrent Models of Visual Attention http://arxiv.org/pdf/1406.6247v1.pdf (Mnih et al., 2014)
● Multiple Object Recognition with Visual Attention http://arxiv.org/pdf/1412.7755v2.pdf (Ba et al., 2014)
● Show, Attend and Tell http://arxiv.org/pdf/1502.03044v2.pdf (Xu et al., 2015)
● DRAW http://arxiv.org/pdf/1502.04623v2.pdf (Gregor et al., 2015)
● Neural Machine Translation by Jointly Learning to Align and Translate http://arxiv.org/pdf/1409.
0473v6.pdf (Bahdanau et al., 2014)
● Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets http://arxiv.org/pdf/1503.
01007v4.pdf (Joulin et al., 2015)
● Deep Learning Theory & Applicaitons: https://www.youtube.com/watch?v=aUTHdgh1OjI
● The Unreasonable Effectiveness of Recurrent Neural Networks https://karpathy.github.
io/2015/05/21/rnn-effectiveness/
● Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning http://www-
anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf (Williams, 1992)
References