Slide 1

Slide 1 text

A Sparse Tour of Imaging Sciences Gabriel Peyré www.numerical-tours.com

Slide 2

Slide 2 text

Signals, Images and More

Slide 3

Slide 3 text

Signals, Images and More

Slide 4

Slide 4 text

Signals, Images and More

Slide 5

Slide 5 text

Signals, Images and More

Slide 6

Slide 6 text

Signals, Images and More

Slide 7

Slide 7 text

Overview • Approximation in an Ortho-Basis • Compression and Denoising • Sparse Inverse Problem Regularization • Compressed Sensing • Iterative Soft Thresholding Algorithm

Slide 8

Slide 8 text

Orthogonal basis { m }m of L2([0, 1]d) Continuous signal/image f L2([0, 1]d). Orthogonal Decompositions

Slide 9

Slide 9 text

Orthogonal basis { m }m of L2([0, 1]d) f = m f, m m ||f|| = |f(x)|2dx = m | f, m ⇥|2 Continuous signal/image f L2([0, 1]d). Orthogonal Decompositions

Slide 10

Slide 10 text

Orthogonal basis { m }m of L2([0, 1]d) f = m f, m m ||f|| = |f(x)|2dx = m | f, m ⇥|2 Continuous signal/image f L2([0, 1]d). Orthogonal Decompositions m

Slide 11

Slide 11 text

1-D Wavelet Basis Wavelets: j,n (x) = 1 2j/2 x 2jn 2j Position n, scale 2j, m = (n, j).

Slide 12

Slide 12 text

1-D Wavelet Basis Wavelets: j,n (x) = 1 2j/2 x 2jn 2j Position n, scale 2j, m = (n, j).

Slide 13

Slide 13 text

m1,m2 Basis { m1,m2 (x1, x2 )}m1,m2 of L2([0, 1]2) m1,m2 (x1, x2 ) = m1 (x1 ) m2 (x2 ) tensor product 2-D Fourier Basis Basis { m (x)}m of L2([0, 1]) m1 m2

Slide 14

Slide 14 text

m1,m2 Basis { m1,m2 (x1, x2 )}m1,m2 of L2([0, 1]2) m1,m2 (x1, x2 ) = m1 (x1 ) m2 (x2 ) tensor product f(x) f, m1,m2 Fourier transform 2-D Fourier Basis Basis { m (x)}m of L2([0, 1]) m1 m2 x m

Slide 15

Slide 15 text

3 elementary wavelets { H, V , D}. Orthogonal basis of L2([0, 1]2): k j,n (x) = 2 j (2 jx n) k=H,V,D j<0,2j n [0,1]2 2-D Wavelet Basis V (x) H(x) D(x)

Slide 16

Slide 16 text

3 elementary wavelets { H, V , D}. Orthogonal basis of L2([0, 1]2): k j,n (x) = 2 j (2 jx n) k=H,V,D j<0,2j n [0,1]2 2-D Wavelet Basis V (x) H(x) D(x)

Slide 17

Slide 17 text

wavelet f, k j,n Example of Wavelet Decomposition f(x) transform x (j, n, k)

Slide 18

Slide 18 text

Discrete Computations Discrete orthogonal basis { m } of CN . f = m f, m m

Slide 19

Slide 19 text

Fast Fourier Transform (FFT), O(N log(N)) operations. Discrete Computations Discrete orthogonal basis { m } of CN . m [n] = 1 N e2i N nm f = m f, m m

Slide 20

Slide 20 text

Fast Fourier Transform (FFT), O(N log(N)) operations. Fast Wavelet Transform, O(N) operations. Discrete Wavelet basis: no closed-form expression. Discrete Computations Discrete orthogonal basis { m } of CN . m [n] = 1 N e2i N nm f = m f, m m

Slide 21

Slide 21 text

Sparse Approximation in a Basis

Slide 22

Slide 22 text

Sparse Approximation in a Basis

Slide 23

Slide 23 text

Sparse Approximation in a Basis

Slide 24

Slide 24 text

Best basis Fastest error decay ||f fM ||2 log(||f fM ||) log(M) Efficiency of Transforms Fourier DCT Local DCT Wavelets

Slide 25

Slide 25 text

Overview • Approximation in an Ortho-Basis • Compression and Denoising • Sparse Inverse Problem Regularization • Compressed Sensing • Iterative Soft Thresholding Algorithm

Slide 26

Slide 26 text

JPEG-2000 vs. JPEG, 0.2bit/pixel

Slide 27

Slide 27 text

Compression by Transform-coding Image f Zoom on f f forward a[m] = ⇥f, m ⇤ R transform

Slide 28

Slide 28 text

Compression by Transform-coding Image f Zoom on f f forward a[m] = ⇥f, m ⇤ R transform Quantization: q[m] = sign(a[m]) |a[m]| T ⇥ Z ˜ a[m] T T 2T 2T a[m] Quantized q[m] bin T q[m] Z

Slide 29

Slide 29 text

Compression by Transform-coding Image f Zoom on f f forward a[m] = ⇥f, m ⇤ R coding transform Entropic coding: use statistical redundancy (many 0’s). Quantization: q[m] = sign(a[m]) |a[m]| T ⇥ Z ˜ a[m] T T 2T 2T a[m] Quantized q[m] bin T q[m] Z

Slide 30

Slide 30 text

Compression by Transform-coding Image f Zoom on f f forward a[m] = ⇥f, m ⇤ R coding decoding q[m] Z transform Entropic coding: use statistical redundancy (many 0’s). Quantization: q[m] = sign(a[m]) |a[m]| T ⇥ Z ˜ a[m] T T 2T 2T a[m] Quantized q[m] bin T q[m] Z

Slide 31

Slide 31 text

Compression by Transform-coding Image f Zoom on f f forward Dequantization: ˜ a[m] = sign(q[m]) |q[m] + 1 2 ⇥ T a[m] = ⇥f, m ⇤ R coding decoding q[m] Z ˜ a[m] dequantization transform Entropic coding: use statistical redundancy (many 0’s). Quantization: q[m] = sign(a[m]) |a[m]| T ⇥ Z ˜ a[m] T T 2T 2T a[m] Quantized q[m] bin T q[m] Z

Slide 32

Slide 32 text

Compression by Transform-coding Image f Zoom on f f , R =0.2 bit/pixel f forward Dequantization: ˜ a[m] = sign(q[m]) |q[m] + 1 2 ⇥ T a[m] = ⇥f, m ⇤ R coding decoding q[m] Z ˜ a[m] dequantization transform backward fR = m IT ˜ a[m] m transform Entropic coding: use statistical redundancy (many 0’s). Quantization: q[m] = sign(a[m]) |a[m]| T ⇥ Z ˜ a[m] T T 2T 2T a[m] Quantized q[m] bin T q[m] Z

Slide 33

Slide 33 text

Compression by Transform-coding Image f Zoom on f f , R =0.2 bit/pixel f forward Dequantization: ˜ a[m] = sign(q[m]) |q[m] + 1 2 ⇥ T a[m] = ⇥f, m ⇤ R coding decoding q[m] Z ˜ a[m] dequantization transform backward fR = m IT ˜ a[m] m transform Entropic coding: use statistical redundancy (many 0’s). Quantization: q[m] = sign(a[m]) |a[m]| T ⇥ Z ˜ a[m] T T 2T 2T a[m] Quantized q[m] bin T q[m] Z ||f fM ||2 = O(M ) =⇥ ||f fR ||2 = O(log (R)R ) Theorem:

Slide 34

Slide 34 text

Noise in Images

Slide 35

Slide 35 text

Denoising

Slide 36

Slide 36 text

Denoising thresh. f = N 1 m=0 f, m ⇥ m ˜ f = | f, m ⇥|>T f, m ⇥ m

Slide 37

Slide 37 text

Denoising thresh. f = N 1 m=0 f, m ⇥ m ˜ f = | f, m ⇥|>T f, m ⇥ m In practice: T 3 for T = 2 log(N) Theorem: if ||f0 f0,M ||2 = O(M ), E(|| ˜ f f0 ||2) = O( 2 +1 )

Slide 38

Slide 38 text

Overview • Approximation in an Ortho-Basis • Compression and Denoising • Sparse Inverse Problems Regularization • Compressed Sensing • Iterative Soft Thresholding Algorithm

Slide 39

Slide 39 text

Recovering f0 2 RN from noisy observations: y = Kf0 + w 2 RP : RN ! RP with P ⌧ N (missing information) Inverse Problems

Slide 40

Slide 40 text

Examples: Inpainting, super-resolution, . . . Recovering f0 2 RN from noisy observations: y = Kf0 + w 2 RP : RN ! RP with P ⌧ N (missing information) f0 K Inverse Problems K

Slide 41

Slide 41 text

Kf = (p✓k )k Inverse Problems in Medical Imaging

Slide 42

Slide 42 text

Magnetic resonance imaging (MRI): Kf = (p✓k )k Kf = ( ˆ f(!))!2⌦ Inverse Problems in Medical Imaging ˆ x

Slide 43

Slide 43 text

Magnetic resonance imaging (MRI): Other examples: MEG, EEG, . . . Kf = (p✓k )k Kf = ( ˆ f(!))!2⌦ Inverse Problems in Medical Imaging ˆ x

Slide 44

Slide 44 text

L1 Regularization coe cients x0 RN

Slide 45

Slide 45 text

L1 Regularization coe cients image x0 RN f0 = x0 RQ

Slide 46

Slide 46 text

L1 Regularization observations w coe cients image K x0 RN f0 = x0 RQ y = Kf0 + w RP

Slide 47

Slide 47 text

y = K f0 + w = x0 + w 2 RP Equivalent model: L1 Regularization observations = K ⇥ ⇥ RP N w coe cients image K x0 RN f0 = x0 RQ y = Kf0 + w RP

Slide 48

Slide 48 text

y = K f0 + w = x0 + w 2 RP Equivalent model: If is invertible: 1 y = x0 + 1 w L1 Regularization observations = K ⇥ ⇥ RP N w coe cients image K x0 RN f0 = x0 RQ y = Kf0 + w RP

Slide 49

Slide 49 text

y = K f0 + w = x0 + w 2 RP Equivalent model: If is invertible: 1 y = x0 + 1 w L1 Regularization observations = K ⇥ ⇥ RP N w coe cients image K x0 RN f0 = x0 RQ y = Kf0 + w RP Problems: 1w can “explose”. can even be non-invertible.

Slide 50

Slide 50 text

Inverse Problem Regularization observations y parameter Estimator: x(y) depends only on Observations: y = x0 + w 2 RP .

Slide 51

Slide 51 text

Inverse Problem Regularization observations y parameter Example: variational methods Estimator: x(y) depends only on x ( y ) 2 argmin x 2RN 1 2 || y x ||2 + J ( x ) Data fidelity Regularity Observations: y = x0 + w 2 RP .

Slide 52

Slide 52 text

J ( x0) Regularity of x0 Inverse Problem Regularization observations y parameter Example: variational methods Estimator: x(y) depends only on x ( y ) 2 argmin x 2RN 1 2 || y x ||2 + J ( x ) Data fidelity Regularity Observations: y = x0 + w 2 RP . Choice of : tradeo ||w|| Noise level

Slide 53

Slide 53 text

J ( x0) Regularity of x0 x ( y ) 2 argmin x = y J ( x ) Inverse Problem Regularization observations y parameter Example: variational methods Estimator: x(y) depends only on x ( y ) 2 argmin x 2RN 1 2 || y x ||2 + J ( x ) Data fidelity Regularity Observations: y = x0 + w 2 RP . No noise: 0+, minimize Choice of : tradeo ||w|| Noise level

Slide 54

Slide 54 text

J0( x ) = # { m ; xm 6= 0} “Ideal” sparsity: Sparse Priors

Slide 55

Slide 55 text

Sparse regularization: x? 2 argmin x 1 2 || y x ||2 + J0( x ) J0( x ) = # { m ; xm 6= 0} “Ideal” sparsity: Sparse Priors

Slide 56

Slide 56 text

Sparse regularization: Denoising in ortho-basis: K = Id, 2 = Id, ⇤ = Id x? 2 argmin x 1 2 || y x ||2 + J0( x ) J0( x ) = # { m ; xm 6= 0} “Ideal” sparsity: Sparse Priors y

Slide 57

Slide 57 text

Sparse regularization: Denoising in ortho-basis: K = Id, 2 = Id, ⇤ = Id x? 2 argmin x 1 2 || y x ||2 + J0( x ) J0( x ) = # { m ; xm 6= 0} “Ideal” sparsity: where ˜ x = ⇤ y = {h y, m i}m, T 2 = 2 min x || ⇤ y x ||2 + T 2 J0( x ) = P m |˜ xm xm |2 + T 2 ( xm ) Sparse Priors y ?y

Slide 58

Slide 58 text

Sparse regularization: Denoising in ortho-basis: K = Id, 2 = Id, ⇤ = Id x? 2 argmin x 1 2 || y x ||2 + J0( x ) J0( x ) = # { m ; xm 6= 0} “Ideal” sparsity: where ˜ x = ⇤ y = {h y, m i}m, T 2 = 2 min x || ⇤ y x ||2 + T 2 J0( x ) = P m |˜ xm xm |2 + T 2 ( xm ) Solution: x ? m = ⇢ xm if | ˜ xm | > T, 0 otherwise. Sparse Priors y ?y ? x ? x ?

Slide 59

Slide 59 text

Sparse regularization: Denoising in ortho-basis: K = Id, 2 = Id, ⇤ = Id Non-orthogonal : NP-hard to solve. x? 2 argmin x 1 2 || y x ||2 + J0( x ) J0( x ) = # { m ; xm 6= 0} “Ideal” sparsity: where ˜ x = ⇤ y = {h y, m i}m, T 2 = 2 min x || ⇤ y x ||2 + T 2 J0( x ) = P m |˜ xm xm |2 + T 2 ( xm ) Solution: x ? m = ⇢ xm if | ˜ xm | > T, 0 otherwise. Sparse Priors y ?y ? x ? x ?

Slide 60

Slide 60 text

Image with 2 pixels: q = 0 J0 (x) = # {m \ xm = 0} J0 (x) = 0 null image. J0 (x) = 1 sparse image. J0 (x) = 2 non-sparse image. x2 Convex Relaxation: L1 Prior x1

Slide 61

Slide 61 text

Image with 2 pixels: q = 0 q = 1 q = 2 q = 3/2 q = 1/2 Jq (x) = m |xm |q J0 (x) = # {m \ xm = 0} J0 (x) = 0 null image. J0 (x) = 1 sparse image. J0 (x) = 2 non-sparse image. x2 Convex Relaxation: L1 Prior q priors: (convex for q 1) x1

Slide 62

Slide 62 text

Image with 2 pixels: q = 0 q = 1 q = 2 q = 3/2 q = 1/2 Jq (x) = m |xm |q J0 (x) = # {m \ xm = 0} J0 (x) = 0 null image. J0 (x) = 1 sparse image. J0 (x) = 2 non-sparse image. x2 J1 (x) = m |xm | Convex Relaxation: L1 Prior Sparse 1 prior: q priors: (convex for q 1) x1

Slide 63

Slide 63 text

x argmin x=y m |xm | x x = y Noiseless Sparse Regularization Noiseless measurements: y = x0

Slide 64

Slide 64 text

x argmin x=y m |xm | x x = y x argmin x=y m |xm |2 Noiseless Sparse Regularization x x = y Noiseless measurements: y = x0

Slide 65

Slide 65 text

x argmin x=y m |xm | x x = y x argmin x=y m |xm |2 Noiseless Sparse Regularization Convex linear program. Interior points, cf. [Chen, Donoho, Saunders] “basis pursuit”. Douglas-Rachford splitting, see [Combettes, Pesquet]. x x = y Noiseless measurements: y = x0

Slide 66

Slide 66 text

Regularization Data fidelity y = x0 + w Noisy measurements: x argmin x RQ 1 2 ||y x||2 + ||x||1 Noisy Sparse Regularization

Slide 67

Slide 67 text

Regularization Data fidelity Equivalence || x = y|| y = x0 + w Noisy measurements: x argmin x RQ 1 2 ||y x||2 + ||x||1 x argmin || x y|| ||x||1 Noisy Sparse Regularization x

Slide 68

Slide 68 text

Iterative soft thresholding Forward-backward splitting Algorithms: Regularization Data fidelity Equivalence || x = y|| y = x0 + w Noisy measurements: x argmin x RQ 1 2 ||y x||2 + ||x||1 x argmin || x y|| ||x||1 Noisy Sparse Regularization Nesterov multi-steps schemes. see [Daubechies et al], [Pesquet et al], etc x

Slide 69

Slide 69 text

K y = Kf0 + w Measures: (Kf)i = ⇢ 0 if i 2 ⌦, fi if i / 2 ⌦. Inpainting Problem

Slide 70

Slide 70 text

Overview • Approximation in an Ortho-Basis • Compression and Denoising • Sparse Inverse Problem Regularization • Compressed Sensing • Iterative Soft Thresholding Algorithm

Slide 71

Slide 71 text

f[n] f0 (n/N) Sampling: ˜ f L2([0, 1]d) f RN Idealization: acquisition device Discretization

Slide 72

Slide 72 text

Data aquisition: Sensors Pointwise Sampling and Smoothness ˜ f L2 f RN f[i] = ˜ f(i/N)

Slide 73

Slide 73 text

Data aquisition: Sensors ˜ f(t) = i f[i]h(Nt i) Shannon interpolation: if Supp( ˆ ˜ f) [ N , N ] h(t) = sin( t) t Pointwise Sampling and Smoothness ˜ f L2 f RN f[i] = ˜ f(i/N)

Slide 74

Slide 74 text

Data aquisition: Sensors ˜ f(t) = i f[i]h(Nt i) Natural images are not smooth. Shannon interpolation: if Supp( ˆ ˜ f) [ N , N ] h(t) = sin( t) t Pointwise Sampling and Smoothness ˜ f L2 f RN f[i] = ˜ f(i/N)

Slide 75

Slide 75 text

Data aquisition: Sensors ˜ f(t) = i f[i]h(Nt i) Natural images are not smooth. But can be compressed e ciently. Shannon interpolation: if Supp( ˆ ˜ f) [ N , N ] 0,1,0,. . . h(t) = sin( t) t Sample and compress simultaneously? Pointwise Sampling and Smoothness ˜ f L2 f RN f[i] = ˜ f(i/N) JPEG-2k

Slide 76

Slide 76 text

˜ f Single Pixel Camera (Rice)

Slide 77

Slide 77 text

˜ f P measures N micro-mirrors Single Pixel Camera (Rice) y[i] = f, i

Slide 78

Slide 78 text

˜ f P/N = 0.16 P/N = 0.02 P/N = 1 P measures N micro-mirrors Single Pixel Camera (Rice) y[i] = f, i

Slide 79

Slide 79 text

Physical hardware resolution limit: target resolution f RN . ˜ f L2 f RN y RP micro mirrors array resolution CS hardware K CS Hardware Model CS is about designing hardware: input signals ˜ f L2(R2).

Slide 80

Slide 80 text

Physical hardware resolution limit: target resolution f RN . ˜ f L2 f RN y RP micro mirrors array resolution CS hardware , ... K CS Hardware Model CS is about designing hardware: input signals ˜ f L2(R2). , ,

Slide 81

Slide 81 text

Physical hardware resolution limit: target resolution f RN . ˜ f L2 f RN y RP micro mirrors array resolution CS hardware , ... f Operator K K CS Hardware Model CS is about designing hardware: input signals ˜ f L2(R2). , ,

Slide 82

Slide 82 text

Need to solve y = Kf. More unknown than equations. dim(ker(K)) = N P is huge. Inversion and Sparsity f Operator K

Slide 83

Slide 83 text

Need to solve y = Kf. More unknown than equations. dim(ker(K)) = N P is huge. Prior information: f is sparse in a basis { m }m . J (f) = Card {m \ | f, m | > } is small. Inversion and Sparsity f Operator K f, m f

Slide 84

Slide 84 text

0 reconstruction: Minimize subject to Kf = y CS Reconstruction J0 (f) = Card {m \ f, m = 0}

Slide 85

Slide 85 text

0 reconstruction: Minimize subject to Kf = y NP-hard to solve. CS Reconstruction J0 (f) = Card {m \ f, m = 0}

Slide 86

Slide 86 text

0 reconstruction: Minimize subject to Kf = y 1 reconstruction: m | f, m | Polynomial-time algorithms. NP-hard to solve. CS Reconstruction J0 (f) = Card {m \ f, m = 0} Minimize subject to Kf = y y = f f, 1 f, 2

Slide 87

Slide 87 text

Theorem: [Candes, Romberg, Tao, Donoho, 2004] If f is k-sparse, i.e. J0 (f) k If P C log(N/k)k then 1-CS reconstruction is exact. Theoretical Performance Guaranties

Slide 88

Slide 88 text

Theorem: [Candes, Romberg, Tao, Donoho, 2004] If f is k-sparse, i.e. J0 (f) k If P C log(N/k)k then 1-CS reconstruction is exact. Extensions to: noisy observation y = Kf + approximate sparsity f = fk sparse + Theoretical Performance Guaranties

Slide 89

Slide 89 text

Theorem: [Candes, Romberg, Tao, Donoho, 2004] If f is k-sparse, i.e. J0 (f) k If P C log(N/k)k then 1-CS reconstruction is exact. Extensions to: noisy observation y = Kf + approximate sparsity f = fk sparse + Research problem: optimal value of C ? for N/k = 4, C log(N/k) 5. “CS is 5 less e cient than JPEG-2k” Theoretical Performance Guaranties

Slide 90

Slide 90 text

Overview • Approximation in an Ortho-Basis • Compression and Denoising • Sparse Inverse Problems Regularization • Compressed Sensing • Iterative Soft Thresholding Algorithm

Slide 91

Slide 91 text

Orthogonal-basis: ⇤ = IdN , x = ⇤ f . Regularization-based denoising: x? = argmin x 2RN 1 2 || x y ||2 + J ( x ) Denoising: y = x0 + w 2 RN , K = Id. Sparse regularization: J ( x ) = P m | xm |q (where |a|0 = (a)) Sparse Regularization Denoising

Slide 92

Slide 92 text

Orthogonal-basis: ⇤ = IdN , x = ⇤ f . Regularization-based denoising: x? = argmin x 2RN 1 2 || x y ||2 + J ( x ) Denoising: y = x0 + w 2 RN , K = Id. Sparse regularization: J ( x ) = P m | xm |q x ? m = S q T ( xm) (where |a|0 = (a)) Sparse Regularization Denoising

Slide 93

Slide 93 text

Sparse regularization: x? 2 argmin x 2RN E ( x ) = 1 2 || y x ||2 + || x ||1 E ( x, ˜ x ) = E ( x ) 1 2 || ( x ˜ x )||2 + 1 2 ⌧ || x ˜ x ||2 E (· , ˜ x ) x ˜ x S ⌧ (u) ⌧ < 1/|| ⇤ || Surrogate Functionals Surrogate functional: E(·)

Slide 94

Slide 94 text

Sparse regularization: x? 2 argmin x 2RN E ( x ) = 1 2 || y x ||2 + || x ||1 E ( x, ˜ x ) = E ( x ) 1 2 || ( x ˜ x )||2 + 1 2 ⌧ || x ˜ x ||2 Proof: E ( x, ˜ x ) / 1 2 || u x ||2 + || x ||1+ cst. argmin x E ( x, ˜ x ) = S ⌧ ( u ) Theorem: E (· , ˜ x ) x ˜ x S ⌧ (u) ⌧ < 1/|| ⇤ || where u = ˜ x ⌧ ⇤( ˜ x y ) Surrogate Functionals Surrogate functional: E(·)

Slide 95

Slide 95 text

Algorithm: x ( ` +1) = argmin x E ( x, x ( ` )) x (`+1) = S 1 ⌧ ( u (`)) Initialize x (0), set ` = 0. x (0) x (1) x (2) u (`) = x (`) ⌧ ⇤( x (`) y ) Iterative Thresholding x E(·)

Slide 96

Slide 96 text

Algorithm: x ( ` +1) = argmin x E ( x, x ( ` )) x (`+1) = S 1 ⌧ ( u (`)) Remark: x (`) 7! u (`) is a gradient descent of || x y ||2 . S 1 `⌧ is the proximal step of associated to || x ||1. Initialize x (0), set ` = 0. x (0) x (1) x (2) u (`) = x (`) ⌧ ⇤( x (`) y ) Iterative Thresholding x E(·)

Slide 97

Slide 97 text

Theorem: if ⌧ < 2 / || ⇤ ||, then x (`) ! x ?. Algorithm: x ( ` +1) = argmin x E ( x, x ( ` )) x (`+1) = S 1 ⌧ ( u (`)) Remark: x (`) 7! u (`) is a gradient descent of || x y ||2 . S 1 `⌧ is the proximal step of associated to || x ||1. Initialize x (0), set ` = 0. x (0) x (1) x (2) u (`) = x (`) ⌧ ⇤( x (`) y ) Iterative Thresholding x E(·)

Slide 98

Slide 98 text

Conclusion

Slide 99

Slide 99 text

Conclusion

Slide 100

Slide 100 text

random acquisition. optimization for reconstruction. #measures sparsity Conclusion • Compressed sensing.