Slide 1

Slide 1 text

Paths to a Unified AGN Outflow Model via Computational Relativity Ashkbiz Danehkar, Postdoc Department of Astronomy, University of Michigan [email protected] Challenges and Innovations in Computational Astrophysics - II, November 20, 2020 Image Credit: J. Bergeron, Sky & Telescope Magazine Image Credit: J. Bergeron, Sky & Telescope Magazine

Slide 2

Slide 2 text

20/11/2020 Computational Astrophysics II 2 Outline  Observational Background  AGN Classification  Ultra-Fast Outflow (UFO)  Evidence for a Unified AGN Outflow Model  Implication of Black Hole Spins  Black Hole Spin Surveys  Relativistically broadened Fluorescence K-shell Iron Line  Compton continuum above 7 keV  Relativistic Reflection Model (relxill + xillver)  Numerical Relativity  Visualization of Gravitational Physical Lines: Tendex and Vortex  Einstein Cactus Computational Toolkit

Slide 3

Slide 3 text

20/11/2020 Computational Astrophysics II 3 AGN Classification Observational Background AGN Unified Model (radio-loud & -quiet AGN, Seyfert I & II Galaxies) Beckmann & Shrader 2012, Active Galactic Nuclei Unified Models for AGNs Antonucci, ARA&A, 1993, 31, 473 Unified Schemes for AGNs Megan Urry & Padovani, 1995, PASP, 107, 803 (Bernie Fanaroff & Julia Riley 1974) AGN Unified Model • Radio-Quiet AGN  Seyfert I (BLR+NLR, compact outflows)  Seyfert II (NLR) • Radio-Loud AGN  FR I (compact radio jets)  FR II (extended radio jets)  Blazar (relativistic beams) (Carl Seyfert 1942)

Slide 4

Slide 4 text

20/11/2020 Computational Astrophysics II 4 Ultra-fast Outflows Disk Black- body Hot Corona Warm Absorbers K-shell Iron Beckmann & Shrader 2012 Risaliti & Elvis 2004 (bbody + powerlaw + ∑ emis) x ∏ abs

Slide 5

Slide 5 text

20/11/2020 Computational Astrophysics II 5 Evidence for Unified AGN Outflow Correlation between outflow kinematics and physical conditions Tombesi + 2013 (Ultra-fast outflows) (Warm Absorbers)

Slide 6

Slide 6 text

20/11/2020 Computational Astrophysics II 6 Problems Radio-quiet and radio-loud AGN Garofalo + 2010 ● Radio-quiet AGN – Compact Outflows – Weak Radio Source ● Radio-loud AGN – Extended Jets – Strong Radio Source – Typically in elliptical massive galaxies evolved from recent mergers (binary SMBH?)

Slide 7

Slide 7 text

20/11/2020 Computational Astrophysics II 7 Observational Background AGN Classification: Radio-loud & Radio-quiet AGN Dermer & Giebles 2016

Slide 8

Slide 8 text

20/11/2020 Computational Astrophysics II 8 Implication of Black Hole Spins Correlation between SMBH Angular Momentum with Uktra-fast Outflows Danehkar +

Slide 9

Slide 9 text

20/11/2020 Computational Astrophysics II 9 Measurements of Black Hole Spins Black Hole Spin Measurement (see Brenneman 2013) ● Thermal Continuum Fitting (UV observation) – stellar-mass black hole – AGN (may problematic due to UV absorption lines!) ● Inner Disk Reflection Modeling – AGN (X-ray) ● High Frequency Quasi-Periodic Oscillations – AGN + stellar-mass black hole (fully not developed) ● X-ray Polarimetry – Need sensitive X-ray polarimter (not available now!) ● Imaging the Event Horizon Shadow – Need Very Long Baseline Interferometry (in development) – Suitable only for Sgr A* and M87 a = J c / G M2 (a: BH spin, J: angular momentum, M: BH mass, G: gravitational constant, c: speed of light)

Slide 10

Slide 10 text

20/11/2020 Computational Astrophysics II 10 Measurements of Black Hole Spins Relativistically broadened Kα iron line (6.4 keV) Compton hump (> 10keV) Black Hole Spin Measurement from X-ray a = - 1 a = 0 a = 1 Image credit: NASA/JPL-Caltech

Slide 11

Slide 11 text

20/11/2020 Computational Astrophysics II 11 Measurements of Black Hole Spins BH Spin from Reflection Modeling ● kerrconv (Brenneman & Reynold 2006) ● relline (Dauser + 2010) ● xillver (Garcia + 2010,11,13) ● relxill (Garcia + 2014) Dauser & Garcia + 2014

Slide 12

Slide 12 text

20/11/2020 Computational Astrophysics II 12 Supermassive Black Hole Spin

Slide 13

Slide 13 text

20/11/2020 Computational Astrophysics II 13 Numerical Relativity Weyl (Vacuum Riemann) Tensor Einstein’s 70th birthday, Institute for Advanced Study, 1949 Weyl, Mathematische Zeitschrift, 2, 384, 1918

Slide 14

Slide 14 text

20/11/2020 Computational Astrophysics II 14 Numerical Relativity Gravitoelectric and Gravitomagnetic Tensors ● Gravitoelectric & Gravitomagnetic fields – Names coined by Kip Thorne (IAU, 97, 255, 1982) – Thorne et al. Black holes: The membrane paradigm (Yale University, 1986) ● Gravitoelectric Tensor – Newtonian Tidal Force ● Gravitomagnetic Tensor – Frame-dragging vortex & Gravitational Waves ● Bianchi Identities – Constraints for gravitoelectric & gravitomagnetic (see e.g. Relativistic Cosmology, Ellis, Maartens, & MacCallum, Cambridge, 2012) Kip Thorne’s 60th birthday, Caltech, 2000

Slide 15

Slide 15 text

20/11/2020 Computational Astrophysics II 15 Numerical Relativity Tendex and Vortex Lines ● Visualization of Gravitoelectric & Gravitomagnetic tensors – Nichols et al. PRD 84, 124012, 2011; PRD 86, 104028, 2012 ● Tidal Tendex Line – Tendex coined by David Nichols (tendere: ‘to stretch’) – integral curves of eigenvectors of gravitoeletric tensor – Owen el al. PRL 106, 151101, 2011 – Zhang et al. PRD 86, 084049, 2012 ● Frame-dragging Vortex Line – integral curves of eigenvectors of gravitomagnetic tensor eigenvector eigenvalue eigenvector eigenvalue Owen el al. PRL 106, 151101, 2011

Slide 16

Slide 16 text

20/11/2020 Computational Astrophysics II 16 Numerical Relativity Tendex and Vortex Lines of Slowly Spinning SMBH Danehkar, IJMPD, 2020, arXiv:2006.13287 [gr-qc] ● Visualization of Eab & Hab around a slow Kerr BH – slow Kerr metric (Zhang et al. PRD 86, 084049, 2012) – gravitoelectric tensor – gravitomagnetic tensor (Zhang et al. PRD 86, 084049, 2012)

Slide 17

Slide 17 text

20/11/2020 Computational Astrophysics II 17 Numerical Relativity Tendex and Vortex Lines of Fast Spinning BH ● Visualization of Eab & Hab around a fast Kerr BH Tidal Tendex Line Frame-dragging Vortex Line Zhang et al. PRD 86, 084049, 2012

Slide 18

Slide 18 text

20/11/2020 Computational Astrophysics II 18 Numerical Relativity Tendex and Vortex Lines of Merging Binary BH ● Visualization of Eab & Hab around binary BHs Tidal Tendex Line Frame-dragging Vortex Line ● Spectral Einstein Code (SpEC) – https://www.black-holes.org/code/SpEC.html – SpEC is not publicity available ● New version: SpECTRE – https://github.com/sxs-collaboration/spectre – SpECTRE is still under development by the SXS (Simulating eXtreme Spacetimes) Collaboration, and not yet ready – Updates on SpECTRE code: https://icerm.brown.edu/programs/sp-f20/w3/ (see talk, Oct 28) Owen el al. PRL 106, 151101, 2011

Slide 19

Slide 19 text

20/11/2020 Computational Astrophysics II 19 Numerical Relativity Gravitational Waves ● Visualization of Eab & Hab around binary BHs – Gravitational Wave Simulations by SpEC Owen el al. PRL 106, 151101, 2011 LIGO detection of gravitational waves, 2016

Slide 20

Slide 20 text

20/11/2020 Computational Astrophysics II 20 Numerical Relativity Einstein Cactus Computational Toolkit ● The Einstein Toolkit (https://einsteintoolkit.org/) – Cactus Thorns (http://svn.einsteintoolkit.org/cactus/) – Recent Tutorial: https://icerm.brown.edu/programs/sp-f20/w1/ ● Einstein Toolkit Thorn: EinsteinAnalysis/WeylScal4 – calculates Weyl scalars in the Einstein Toolkit – converted to Thorn using Kranc (http://kranccode.org/) ● New Module for gravitoelectric and gravitomagnetic tensors in the Einstein Toolkit – can be made by Mathemtica scripts and converted to Thorn using Kranc ● Kranc: Mathematica program turns tensorial equations into a thorn for the Cactus Computational Toolkit transverse wave component for GW simulations of mergers

Slide 21

Slide 21 text

20/11/2020 Computational Astrophysics II 21 Summary Unified AGN Outflow Model via BH Spin Survey & Numerical Relativity ● Observational Background – Observational Evidence for a Unified AGN Outflow Model – Possible correlation between SMBH angular momentum and AGN outflows – Physical mechanism behind radio-loud AGN: binary SMBH in radio-loud? ● Black Hole Spin Surveys  Relativistically broadened Fluorescence Iron Line + Compton continuum  Relativistic Reflection Model (relxill + xillver) ● Numerical Relativity – Gravitoelectric and Gravitiomagnetic tensors visualized using their Tidal Tendex and Frame-dragging Vortex Lines. – Visualization of Tendex and Vortex lines for exact solutions and binary BHs are very complex, but can be done using a new module made by either Kranc or NRPy+ for the Einstein Toolkit. These simulations are computationally expensive (need HPC)

Slide 22

Slide 22 text

20/11/2020 Computational Astrophysics II 22 Image Credit: J. Bergeron, Sky & Telescope Magazine Image Credit: J. Bergeron, Sky & Telescope Magazine Thank you for your attention Thank you for your attention