Slide 1

Slide 1 text

Electrifying Metal-Organic Frameworks: Absolute Electron Energies Prof. Aron Walsh Chair in Materials Design Department of Materials Imperial College London https://wmd-group.github.io @lonepair hν e- MOF Detector ΔE = ?

Slide 2

Slide 2 text

Metal-Organic Frameworks (MOFs) Crystals of Organic & Inorganic Building Blocks Metal Ligand 0 1 2 3 0 Molecular complexes O0I0 Hybrid chains O0I1 Hybrid layers O0I2 Hybrid framework O0I3 1 Coordination polymer O1I0 Mixed layers O1I1 Mixed framework O1I2 2 Coordination layer O2I0 Mixed framework O2I1 3 Coordination framework O3I0 Rule: n+m ≤ 3 Dimensionality of Inorganic Connectivity (In) I – O – I Connectivity (Om) Adapted from A. K. Cheetham et al, Chem. Comm. 4780 (2006)

Slide 3

Slide 3 text

Emergence of Conductive MOFs

Slide 4

Slide 4 text

Electroactive MOFs Materials Platform for Exciting Physical Properties This is an isotherm-free presentation Hendon, Butler & Walsh, MRS Bulletin 41, 870 (2016)

Slide 5

Slide 5 text

Electroactive MOFs Materials Platform for Exciting Physical Properties This is an isotherm-free presentation Hendon, Butler & Walsh, MRS Bulletin 41, 870 (2016)

Slide 6

Slide 6 text

Absolute Band Energies are Important Relative Electron Energies Band gaps and valence / conduction band widths Absolute Electron Energies Dictate stability and transfer of charge • Redox chemistry: photocatalysis to batteries • Defect physics: controlling n-type / p-type • Device engineering: band alignment & barriers

Slide 7

Slide 7 text

Talk Outline: Ionisation Potentials 1. History of Absolute Electron Energies 2. Bridging Theory and Experiment 3. Workfunctions of Porous Materials

Slide 8

Slide 8 text

(Semiconductor) Terminology 1. Ionisation Potential – Energy to remove electron from valence band (VB) to the vacuum level (VL) 2. Workfunction – Energy to remove electron from the Fermi level (EF ) to the vacuum level 3. Electron Affinity – Energy to add an electron to the conduction band (CB) from the vacuum level VB CB VL EF

Slide 9

Slide 9 text

19th Century: Photoelectric Effect Ultraviolet Light “Excites” Certain Materials Annalen der Physik (1887); DOI: 10.1002/andp.18872670827

Slide 10

Slide 10 text

Bulk Electron Binding Energy Binding Energy = E[N-1] – E[N] Energy of system with N electrons

Slide 11

Slide 11 text

Surface Electrostatic Double Layer Workfunction = E[N-1] – E[N] + ED Energy due to surface dipole

Slide 12

Slide 12 text

Surface Electrostatic Double Layer Workfunction = E[N-1] – E[N] + ED !+ !- Electrons spill at a surface

Slide 13

Slide 13 text

Calculations for Polar Crystals Long-range Polarisation of Crystal: IP and EA

Slide 14

Slide 14 text

Emergence of Semiconductor Devices From Electron Energies to Devices Semiconductor Metal

Slide 15

Slide 15 text

Emergence of Semiconductor Devices From Electron Energies to Devices

Slide 16

Slide 16 text

Enter Density Functional Theory Self-Consistent Electronic Structure

Slide 17

Slide 17 text

Enter Density Functional Theory Surface Dipole can be Quantified

Slide 18

Slide 18 text

Exit Density Functional Theory Arbitrary Reference for Electronic Eigenvalues of Solids – Potential Zero is Shape Dependent

Slide 19

Slide 19 text

Periodic Boundary Conditions An Infinite Crystal Has No Vacuum Level

Slide 20

Slide 20 text

Talk Outline: Ionisation Potentials 1. History of Absolute Electron Energies 2. Bridging Theory and Experiment 3. Workfunctions of Porous Materials

Slide 21

Slide 21 text

Phenomenological Theory Geometric Mean of the Electronegativity This approximates the mid-gap energy (for atoms the Mulliken electronegativity is the mean of the IP and EA) Nethercot (1974); Butler & Ginley (1978); Xu & Schoonen (2000) Used in many recent high-throughput screening studies, but is clearly limited: no account of local structure, oxidation state, or chemical bonding

Slide 22

Slide 22 text

Phenomenological Theory Actually a Decent Guess… Butler & Ginley, J. Electrochem. Soc. 125, 229 (1978) Calculated

Slide 23

Slide 23 text

Phenomenological Theory

Slide 24

Slide 24 text

Phenomenological Theory

Slide 25

Slide 25 text

Screening New Photoactive Materials Sustainability index From Searching over 4 Trillion Compounds… D. W. Davies et al, Chem 1, 617 (2016); https://github.com/WMD-group/SMACT

Slide 26

Slide 26 text

Screening New Photoactive Materials Sustainability index From Searching over 4 Trillion Compounds… D. W. Davies et al, Chem 1, 617 (2016); https://github.com/WMD-group/SMACT

Slide 27

Slide 27 text

Quantitative Techniques Experiment Simulation Photoelectron Spectroscopy (secondary electron cutoff) Surface Termination (vacuum alignment) Electrochemical Response (flat-band potential) Molecular Dynamics (explicit solvent) Photoelectron Spectroscopy (core level binding) Heterojunction (core level alignment) Electrochemical Response (redox energies) Molecular Dynamics (explicit solvent / charge)

Slide 28

Slide 28 text

Embedded Crystal Approach Quantum Mechanical (QM) / Molecular Mechanical (MM) Embedding of Crystalline Solids Region I: QM Region II: MM (active) Region III: MM (frozen) Region IV: Point Charges Aim to reproduce electrostatic, chemical, and mechanical environment of crystal in Region I Daresbury Laboratory (UK): www.chemshell.org

Slide 29

Slide 29 text

Embedded Crystal Approach D. O. Scanlon et al, Nat. Mater. 12, 798 (2013); www.chemshell.org Calculate Ionisation Potentials with Long-range Polarisation of Crystal (ΔSCF procedure)

Slide 30

Slide 30 text

Effect of Local Coordination J. Buckeridge et al, Chem. Mater. 17, 3844 (2015); www.chemshell.org Range of Oxygen Environments (2,3,4) in TiO2

Slide 31

Slide 31 text

Effect of Local Coordination J. Buckeridge et al, Chem. Mater. 17, 3844 (2015); www.chemshell.org Range of Electron Energies in TiO2 Polymorphs Ti is 7-fold coordinated!

Slide 32

Slide 32 text

Effect of Local Coordination J. Buckeridge et al, Chem. Mater. 17, 3844 (2015); www.chemshell.org Range of Electron Energies in TiO2 Polymorphs Ti is 7-fold coordinated!

Slide 33

Slide 33 text

Talk Outline: Ionisation Potentials 1. History of Absolute Electron Energies 2. Bridging Theory and Experiment 3. Workfunctions of Porous Materials

Slide 34

Slide 34 text

Emergence of Conductive MOFs

Slide 35

Slide 35 text

Limitations of Current Atomistic Theory Technique Limitations Surface Termination (vacuum alignment) Values depend on surface Molecular Dynamics (explicit solvent) Requires large scale simulations – convergence Heterojunction (core level alignment) Requires compatible crystal structures Embedded Clusters (direct IP calculation) Requires complex setup procedure and forcefield

Slide 36

Slide 36 text

Frameworks with Large Pores a d b e c f r = 6 r = 5, 7, 8 r = 9 r = 7.5 r = 7.5 r = 10 Pore Radius () MOF-5 HKUST-1 ZIF-8 COF-1M CPO-27 MIL-125

Slide 37

Slide 37 text

Use the Internal Vacuum Level Eigenvalues Aligned to Pore Potential https://github.com/WMD- group/MacroDensity • Integrate sphere at center of pore • Check that potential has reached a plateau • Implemented in Python code (for 1D, 2D and 3D averages):

Slide 38

Slide 38 text

Band Alignment of MOFs Place MOFs and Inorganic Semiconductors on a Common Energy Scale Butler, Hendon and Walsh, JACS 136, 2703 (2014) Good agreement with first measurements of MOF workfunctions

Slide 39

Slide 39 text

Band Alignment of MOFs Explain Electron Localisation in d0 Frameworks Nasalevich et al, Sci. Rep. 6, 23676 (2016)

Slide 40

Slide 40 text

Electroactive MOFs Materials Platform for Exciting Physical Properties Hendon, Butler & Walsh, MRS Bulletin 41, 870 (2016)

Slide 41

Slide 41 text

Electroactive MOFs Materials Platform for Exciting Physical Properties Hendon, Butler & Walsh, MRS Bulletin 41, 870 (2016)

Slide 42

Slide 42 text

Conclusions 1. Solid absolute electron energies are simple to define but challenging for theory and experiment 2. Electroactive MOF knowledge is increasing towards rational control of functionality Collaborators: Keith Butler (Bath); Chris Hendon (MIT); Yu Kumagai & Fumiyasu Oba (Tokyo Tech); Su-Huai Wei (Beijing CSRC); Alexey Sokol & John Buckeridge (UCL); Jorge Gascon (Delft) Funders: JSPS; ERC; EPSRC; Royal Society Slides: https://speakerdeck.com/aronwalsh