Slide 53
Slide 53 text
References
• H. Zhou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 2006.
• A. Hyvärinen, K. Zhang, S. Shimizu, P. O. Hoyer. Estimation of a structural vector autoregressive model using non-
Gaussianity. Journal of Machine Learning Research, 11(May): 1709−1731, 2010.
• B. Huang, K. Zhang, and B. Schölkopf. Identification of time-dependent causal model: a Gaussian process treatment. In
Proc. 24th International Joint Conference on Artificial Intelligence (IJCAI2015), pp. xx-xx, Buenos Aires, Argentina, 2015.
• M. Gong, K. Zhang, B. Schölkopf, D. Tao, and P. Geiger. Discovering temporal causal relations from subsampled data. In
Proc. 32nd International Conference on Machine Learning (ICML2015), pp. xx-xx, Lille, France, 2015.
• M. Gong, K. Zhang, B. Schölkopf, C. Glymour, and D. Tao. Causal discovery from temporally aggregated time series. In
Proc. 33rd Conference on Uncertainty in Artificial Intelligence (UAI2017), pp. xx-xx, Sydney, Australia, 2017.
• G. Lacerda, P. Spirtes, J. Ramsey and P. O. Hoyer. Discovering cyclic causal models by independent components analysis.
In Proc. 24th Conf. on Uncertainty in Artificial Intelligence (UAI2008), pp. 366-374, Helsinki, Finland, 2008.
• P. O. Hoyer, S. Shimizu, A. Kerminen and M. Palviainen. Estimation of causal effects using linear non-gaussian causal
models with hidden variables. International Journal of Approximate Reasoning, 49(2): 362-378, 2008.
• S. Salehkaleybar, A. Ghassami, N. Kiyavash, K. Zhang. Learning Linear Non-Gaussian Causal Models in the Presence of
Latent Variables. Journal of Machine Learning Research, 21:1-24, 2020.
53