Slide 20
Slide 20 text
19
Referências Bibliográficas II
LIPPI, M.; BERTINI, M.; FRASCONI, P. Short-term traffic flow
forecasting: An experimental comparison of time-series analysis and
supervised learning. In: IEEE Transactions on Intelligent
Transportation Systems. [S.l.: s.n.], 2013. p. 871–882.
ROSE, Y.; YAGUANG, L.; CYRUS, S.; UGUR, D.; YAN, L. Deep
learning: A generic approach for extreme condition traffic forecasting.
In: Proceedings of the 2017 SIAM International Conference on Data
Mining. [S.l.: s.n.], 2017. p. 777–785.
XIAOLEI, M.; ZHIMIN, T.; YINHAI, W.; HAIYANG, Y.; YUNPENG, W.
Long short-term memory neural network for traffic speed prediction
using remote microwave sensor data. In: Transportation Research
Part C: Emerging Technologies. [S.l.: s.n.], 2015. p. 187–197
|