Slide 1

Slide 1 text

論文紹介 AdaNet: Adaptive Structural Learning of Artificial Neural Networks @shuhei_fujiwara 2019-06-26 1

Slide 2

Slide 2 text

What’s AdaNet? ▶ ICML 2017 ▶ http://proceedings.mlr.press/v70/cortes17a.html ▶ Google AI Blog: ▶ https://ai.googleblog.com/2018/10/introducing-adanet-fast-and-flexible.html ▶ AutoML Table の裏で使われている (という噂の) 手法 ▶ https://cloud.google.com/automl-tables/docs/features ▶ TensorFlow implementation ▶ https://github.com/tensorflow/adanet 2

Slide 3

Slide 3 text

Basic Idea of AdaNet

Slide 4

Slide 4 text

The Goal of AdaNet Feed forward network よりも一般的なネットワーク構成の中から良いものを探す ▶ 後ろの任意の層の任意のノードに対して辺を繋げる ▶ 実際には汎化誤差の上界を保証するためにもう少し制約を入れる 3

Slide 5

Slide 5 text

Basic Idea ▶ 最初は小さいネットワークで普通に学習 この時点での目的関数 (正則化項は省略) 1 m m ∑ i=1 Φ (1 − yif1(xi)) ▶ yi ∈ {−1, +1}: label, Φ(·): loss function ▶ f1(·): 1 反復目のモデルの出力 ▶ 汎化誤差の上界を保証するには 最後の層への重みに L1 正則化が必要 Input Output 4

Slide 6

Slide 6 text

Basic Idea ▶ 真の値と現時点でのモデルの output の差を 予測するようなネットワークを継ぎ足す 新しい subnetwork の出力を足し込む F(w, u) = 1 m m ∑ i=1 Φ (1 − yif1(xi) − yiw · u(xi)) ▶ −yiw · u(xi): 赤い subnetwork の出力 Input Output 5

Slide 7

Slide 7 text

How to Add Subnetwork Subnetwork の候補 以下の 2 種類を試して良かった方をくっつける: ▶ 以下の 2 種類を試して良かった方を使う ▶ 今のネットワークと同じ深さのもの ▶ 今のネットワークより 1 段深いもの ▶ Subnetwork の制約 ▶ 1 つ前の層としか結合しない (汎化誤差の上界を保証するのに必要) Input Output 6

Slide 8

Slide 8 text

Algorithm 1. 2 種類の subnetwork を作る ▶ 今と同じ深さのやつと 1 段深いやつ 2. それぞれくっつけて学習させてみる 3. より性能が良い方の subnetwork を採用する ▶ 性能は正則化なども込みの目的関数で測る ▶ 本当はこの部分に Rademacher complexity (の推定値) とかが隠れているので 結構重要 ▶ 改善しなかったらアルゴリズム終了 4. 1 へ戻る 7

Slide 9

Slide 9 text

Generalization Bound

Slide 10

Slide 10 text

汎化誤差の上界に関する議論の定石 手持ちのサンプルに対する誤判別率を使って持っていない母集団に対する 誤判別率を評価したい ▶ S = ((x1, y1), . . . , (xm, ym)): 持っているサンプル ▶ R(f) = E(x,y)∼D [ 1yf(x)≤0 ] : 母集団に対する誤判別率の期待値 ▶ ^ RS,ρ(f) = 1 m ∑ m i=1 1yif(xi)≤ρ : 持っているサンプル集合 S に対する誤判別率 ▶ マージン ρ だけ余裕を持って判別させるのがミソ R(f) ≤ ^ RS,ρ(f)+「十分サンプル数を大きくすれば定数に近付く何か」 という形がゴール 8

Slide 11

Slide 11 text

Formal Formulation 仮説集合 (アルゴリズムで探索対象となる関数の集合) を定義 今回はノードや層ごとに分けて定義するところが少し特徴的 入力から最初の層への仮説集合 H1 = { x → u · Ψ(x) : u ∈ Rn0 , ∥u∥p ≤ Λ1,0 } ▶ Ψ(·): 入力データからベクトルへの写像 (たとえば文章と BoW) ▶ h1,j ∈ H1 : x ∈ X から 1 層目のノード j に渡る値への写像 9

Slide 12

Slide 12 text

Formal Formulation 2 層目以降の (k 層目の各ノードを構成する) 仮説集合 Hk = { x → k−1 ∑ s=1 us · (φs ◦ hs)(x) : us ∈ Rns , ∥us∥p ≤ Λ1,0, hk,s ∈ Hs } ▶ hs : ネットワークの s 層目 ▶ φ: 活性化関数 ▶ u: s 層目全ノードから k 層目のある 1 ノードへ繋がる重み 10

Slide 13

Slide 13 text

Rademacher Complexity 汎化誤差の上界を議論するための道具で、仮説 (関数) 集合の複雑さの指標 ^ RS(G) = 1 m Eσ [ sup h∈G m ∑ i=1 σih(xi) ] R(G) = ES∼D [ ^ RS(G) ] ▶ ランダムにラベルを付与したデータに対してどれくらい正しく判別できる 関数が仮説内に存在するか ▶ R が大きすぎる ==> 関数が複雑すぎて過学習する 11

Slide 14

Slide 14 text

Theorem 1 のお気持ち Theorem 1 R(f) ≤ ^ RS,ρ(f) + 4 ρ l ∑ k=1 ∥wk∥1Rm( ˜ Hk) + 2 ρ √ log l m + ˜ O ( 1 ρ √ log l m ) where ˜ Hk = Hk ∪ (−Hk) ▶ サンプル数 m を十分大きく取れば右の 2 項はゼロ ▶ Rademacher complexity と正則化項でおさえられる 12

Slide 15

Slide 15 text

Lemma 2 のお気持ち ▶ Rademacher complexity って具体的にどれくらいの大きさ? ▶ 仮説集合 Hk をちょっと狭めると議論できる ▶ H∗ k : Hk に「1 つ前の層にしか接続しない」という制約を加えた版 Lemma 2 ^ RS(H∗ k ) ≤ r∞ΛkN 1 q k √ log(2n0) 2m ▶ r∞ = maxi∈[1,m] ∥Ψ(xi)∥∞ 13

Slide 16

Slide 16 text

Objective Function

Slide 17

Slide 17 text

Objective Function 汎化誤差の上界を踏まえて目的関数を次のように設定 F(w) = 1 m m ∑ i=1 Φ  1 − yi N ∑ j=1 wjhj   + N ∑ j=1 Γj|wj| where Γj = λRm(Hkj ) + β, hj ∈ H∗ = ∪l k=1 ˜ H∗ k Rademacher complexity は lemma 2 の上界で代用する 14

Slide 18

Slide 18 text

Iterations 各反復では次のような部分問題を解けば良い Ft(w, u) = 1 m m ∑ i=1 Φ  1 − yi N ∑ j=1 wjhj − yiw · u(xi)   + N ∑ j=1 Γu∥w∥1 ▶ u: Subnetwork の最後の層 ▶ 裏にそこまでのネットワークの重みが変数として隠れている ▶ w: Subnetwork の最後の層から出力への重み ▶ Γu : Subnetwork の深さで R が変わる (ので u が添字) 15

Slide 19

Slide 19 text

Numerical Experiments

Slide 20

Slide 20 text

Experiments with CIFAR-10 詳しくは論文参照 ▶ 普通のニューラルネットや Logistic Regression と比べて高精度 ▶ Subnetwork のくっつけ方は工夫の余地があるので AdaNet 同士でも比較 ▶ AdaNet.R: L1 正則化を追加 ▶ AdaNet.P: 新しい subnetwork は前回加えたものにだけ接続 ▶ AdaNet.D: 前回加えたものとの接続に dropout を入れる ▶ 疎結合にしても精度は落ちない 16

Slide 21

Slide 21 text

Implementation

Slide 22

Slide 22 text

TensorFlow Implementation ▶ TensorFlow での実装 ▶ https://github.com/tensorflow/adanet ▶ 研究の実験用コードじゃなくてマジでちゃんと API 整えられたやつ ▶ とても嬉しい ▶ TensorFlow の Estimator API として作られている 17

Slide 23

Slide 23 text

Conclusions

Slide 24

Slide 24 text

Conclusions ▶ 論文ではきちんと汎化誤差の上界など理論的な面が議論されている ▶ 実装はマジでそのまま使えるやつが公開されてる ▶ Estimator の流儀で書くだけなので、最悪地雷を踏んでも 別の手法にすぐ逃げられる ▶ AutoML Table みたいなサービスにも投入された 研究 ==> 実用化の流れが芸術点高い 18