Slide 29
Slide 29 text
PhD Candidature Defense
Name
Muhammad Faiz bin Mohd Zaki – 17021637
References
Aceto, G., Ciuonzo, D., Montieri, A., & Pescapé, A. (2021). DISTILLER: Encrypted traffic classification via multimodal multitask deep learning. Journal of Network and
Computer Applications, 102985. doi:https://doi.org/10.1016/j.jnca.2021.102985
Bakhshi, T., & Ghita, B. (2016). On Internet Traffic Classification: A Two-Phased Machine Learning Approach. Journal of Computer Networks and Communications, 2016, 1-
21. doi:10.1155/2016/2048302
Bu, Z., Zhou, B., Cheng, P., Zhang, K., & Ling, Z. (2020). Encrypted Network Traffic Classification Using Deep and Parallel Network-in-Network Models. IEEE Access, 8, 132950-
132959. doi:10.1109/ACCESS.2020.3010637
Kampeas, J., Cohen, A., & Gurewitz, O. (2018). Traffic Classification Based on Zero-Length Packets. IEEE Transactions on Network and Service Management, 15, 1049-1062.
doi:10.1109/TNSM.2018.2825881
Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R., & Saberian, M. (2020). Deep packet: a novel approach for encrypted traffic classification using deep learning.
Soft Computing, 24(3), 1999-2012. doi:10.1007/s00500-019-04030-2
Mun, H., & Lee, Y. (2021). Internet Traffic Classification with Federated Learning. Electronics, 10(1). doi:10.3390/electronics10010027
Salman, O., Elhajj, I. H., Chehab, A., & Kayssi, A. (2019). A Multi-level Internet Traffic Classifier Using Deep Learning. 2018 9th International Conference on the Network of the
Future (NOF): IEEE.
Shapira, T., & Shavitt, Y. (2019, 29 April-2 May 2019). FlowPic: Encrypted Internet Traffic Classification is as Easy as Image Recognition. Paper presented at the IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
Yamansavascilar, B., Guvensan, M. A., Yavuz, A. G., & Karsligil, M. E. (2017). Application identification via network traffic classification. 2017 International Conference on
Computing, Networking and Communications (ICNC): IEEE.
Zheng, W., Gou, C., Yan, L., & Mo, S. (2020). Learning to Classify: A Flow-Based Relation Network for Encrypted Traffic Classification. Paper presented at the Proceedings of
The Web Conference 2020, Taipei, Taiwan. https://doi.org/10.1145/3366423.3380090
29