Slide 1

Slide 1 text

FREQUENTIST STATISTICS

Slide 2

Slide 2 text

BAYESIAN STATISTICS

Slide 3

Slide 3 text

BAYESIAN STATISTICS

Slide 4

Slide 4 text

Bayesian v. Frequentist

Slide 5

Slide 5 text

Bayesian v. Frequentist A fundamental difference in philosophy

Slide 6

Slide 6 text

Bayesian v. Frequentist A fundamental difference in philosophy …that usually get you to similar results* *for simple problems

Slide 7

Slide 7 text

YOU HOW DO DEFINE PROBABILITY?

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

Related to our degree of belief / certainty

Slide 10

Slide 10 text

Related to our degree of belief / certainty Related to the frequency of repeated events

Slide 11

Slide 11 text

Related to our degree of belief / certainty ↳ Bayesian ↳ Frequentist Related to the frequency of repeated events

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

“There is a 50% chance it will rain tomorrow” Bayesian

Slide 14

Slide 14 text

“There is a 50% chance it will rain tomorrow” “If we observe many tomorrows, 50% of the time it will rain” Bayesian Frequentist

Slide 15

Slide 15 text

“There is a 50% chance it will rain tomorrow” “If we observe many tomorrows, 50% of the time it will rain” Bayesian Frequentist lolwut

Slide 16

Slide 16 text

Can be more expensive (computationally) Priors (ahhhhhhh) No way to make decisions Why to not go Bayesian?

Slide 17

Slide 17 text

Prior information Nuisance parameters Hierarchical models Interpretation of uncertainty Why go Bayesian?

Slide 18

Slide 18 text

Prior information Nuisance parameters Hierarchical models Interpretation of uncertainty Why go Bayesian?

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

The controversy

Slide 23

Slide 23 text

The controversy

Slide 24

Slide 24 text

The controversy ya, s’ok Frequentist

Slide 25

Slide 25 text

The controversy ya, s’ok Frequentist

Slide 26

Slide 26 text

The controversy ya, s’ok wtf m8? Frequentist

Slide 27

Slide 27 text

The controversy ya, s’ok wtf m8? Frequentist

Slide 28

Slide 28 text

The controversy ya, s’ok wtf m8? Frequentist

Slide 29

Slide 29 text

Priors In Bayesian inference, you always need to specify a prior. ! Everyone brings prior information into modeling, you just make it explicit.

Slide 30

Slide 30 text

Priors They mathematically specify your personal or subjective beliefs. They tend not to matter with enough data

Slide 31

Slide 31 text

Priors They mathematically specify your personal or subjective beliefs. They tend not to matter with enough data

Slide 32

Slide 32 text

Priors They mathematically specify your personal or subjective beliefs. They tend not to matter with enough data

Slide 33

Slide 33 text

Priors They mathematically specify your personal or subjective beliefs. They tend not to matter with enough data

Slide 34

Slide 34 text

Rules of thumb

Slide 35

Slide 35 text

Rules of thumb “Principle of transformation groups”

Slide 36

Slide 36 text

Rules of thumb “Principle of transformation groups” Priors on location parameters should be translation independent.

Slide 37

Slide 37 text

Rules of thumb “Principle of transformation groups” Priors on location parameters should be translation independent.

Slide 38

Slide 38 text

Rules of thumb “Principle of transformation groups” Priors on location parameters should be translation independent. Priors on scale parameters should be scale invariant.

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

DO NOT look at your data, then assign a prior based on the data.

Slide 41

Slide 41 text

DO NOT look at your data, then assign a prior based on the data. DO NOT always use uniform (flat) priors.

Slide 42

Slide 42 text

DO NOT look at your data, then assign a prior based on the data. DO NOT always use uniform (flat) priors. DO NOT try to use conjugate priors, unless you are hardcore…

Slide 43

Slide 43 text

Nuisance parameters We don’t care about it, but we must account for it to properly model the data

Slide 44

Slide 44 text

Nuisance parameters We don’t care about it, but we must account for it to properly model the data

Slide 45

Slide 45 text

Nuisance parameters We don’t care about it, but we must account for it to properly model the data marginal posterior

Slide 46

Slide 46 text

You go to The Telescope™ and measure the flux from a star with no variability. Example: Nuisance parameters

Slide 47

Slide 47 text

Example: Nuisance parameters time, t flux, f yer model f = c 10

Slide 48

Slide 48 text

Example: Nuisance parameters

Slide 49

Slide 49 text

Example: Nuisance parameters WE SUCK

Slide 50

Slide 50 text

Example: Nuisance parameters

Slide 51

Slide 51 text

Example: Nuisance parameters but then…

Slide 52

Slide 52 text

Example: Nuisance parameters but then…

Slide 53

Slide 53 text

Example: Nuisance parameters The marginal posterior

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

WE SUCK… LESS?

Slide 56

Slide 56 text

You are at The Telescope™ and you compute that there is a 40% chance of rain tonight. Wat do? Making decisions

Slide 57

Slide 57 text

Bayesians do not produce point estimates!