Slide 30
Slide 30 text
Second-order worst-case complexity
We aim to reach an (
g
,
H
)-second-order critical point, i.e.
∇f (x
k
) <
g
and λmin(∇2f (x
k
)) > −
H
.
Theorem
Let N gH the number of evaluations of f needed to reach a
(
g
,
H
)-second-order critical point; then
N gH ≤ O n2 max κ−3 −3
g
, σ−3 n3 −3
H
.
Corollary
Choosing D
k
= [I -I] yields κ = 1/
√
n, σ = 1, and the complexity bound is
O n5 max −3
g
, −3
H
.
Mesures de criticalité d'ordres 1 et 2 en recherche directe 21 / 25