Slide 33
Slide 33 text
References
1. Wang, F. and Shoshitaishvili, Y., 2017, September. Angr-the next generation of binary analysis. In 2017 IEEE Cybersecurity Development
(SecDev) (pp. 8-9). IEEE. https://www.researchgate.net/publication/320651303_Angr_-_The_Next_Generation_of_Binary_Analysis
2. Angr Github angr/angr: A powerful and user-friendly binary analysis platform!
3. angr · PyPI
4. Shoshitaishvili, Yan & Wang, Ruoyu & Hauser, Christophe & Kruegel, Christopher & Vigna, Giovanni. (2015). Firmalice - Automatic Detection
of Authentication Bypass Vulnerabilities in Binary Firmware. 10.14722/ndss.2015.23294.
https://www.researchgate.net/publication/300924994_Firmalice_-_Automatic_Detection_of_Authentication_Bypass_Vulnerabilities_in_Binar
y_Firmware
5. FirmUSB: Vetting USB Device Firmware using Domain Informed Symbolic Execution
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_1_2.pdf
6. Angr internals (blog) https://angr.io/blog/throwing_a_tantrum_part_1/
7. PyVex https://angr.io/api-doc/pyvex.html
8. ValGrind https://www.valgrind.org/docs/manual/hg-manual.html
9. James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.
DOI:https://doi.org/10.1145/360248.360252
10. Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic Execution
Techniques. ACM Comput. Surv. 51, 3, Article 50 (July 2018), 39 pages. DOI:https://doi.org/10.1145/3182657