Slide 1

Slide 1 text

ػցֶशΛ࢖ͬͯࣗવݕࡧʹڧ͍αΠτΛ࡞Δ ݕࡧΩʔϫʔυΛTDJLJUMFBSOͰ ΫϥελϦϯάͨ͠࿩ 406 ˏTPIFJZBHJ TPIFJZBHJ

Slide 2

Slide 2 text

ࣗݾ঺հ ͜Μͳਓʹฉ͍ͯཉ͍͠ Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ ίʔυ͸ͲΜͳײ͡ ·ͱΊ ໨࣍

Slide 3

Slide 3 text

ࣗݾ঺հ גࣜձࣾι΢୅දऔక໾ TPVDPKQ ɾίϯςϯπϚʔέςΟϯά ɾ8FC޿ࠂӡ༻ ɾϚʔέςΟϯάπʔϧ࡞੒ ຊொΦʔϓϯιʔεϥϘӡӦ ɾΤϯδχΞͷίϛϡχςΟεϖʔε େࡕ1ZUIPOͷձɹΦʔΨφΠβʔ தখاۀிϛϥαϙઐ໳Ո೿ݣɹొ࿥ઐ໳Ո 8FC޿ࠂ΍ਓࡐϏδωεͷӦۀ͔Β࢓ࣄΛ͸͡Ίɺ 8FCӡ༻΍޿ࠂӡ༻Λ΍ΓͭͭɺϓϩάϥϜΛॻ͘ਓ ίʔυ͕ॻ͚ΔϚʔέολʔ !TPIFJZBHJ TPIFJZBHJ 4PIFJ:BHJʗീ໦૑ฏ

Slide 4

Slide 4 text

ࣗݾ঺հ גࣜձࣾι΢୅දऔక໾ TPVDPKQ ɾίϯςϯπϚʔέςΟϯά ɾ8FC޿ࠂӡ༻ ɾϚʔέςΟϯάπʔϧ࡞੒ ຊொΦʔϓϯιʔεϥϘӡӦ ɾΤϯδχΞͷίϛϡχςΟεϖʔε େࡕ1ZUIPOͷձɹΦʔΨφΠβʔ தখاۀிϛϥαϙઐ໳Ո೿ݣɹొ࿥ઐ໳Ո 8FC޿ࠂ΍ਓࡐϏδωεͷӦۀ͔Β࢓ࣄΛ͸͡Ίɺ 8FCӡ༻΍޿ࠂӡ༻Λ΍ΓͭͭɺϓϩάϥϜΛॻ͘ਓ ίʔυ͕ॻ͚ΔϚʔέολʔ !TPIFJZBHJ TPIFJZBHJ 4PIFJ:BHJʗീ໦૑ฏ ࠷ۙͷझຯ͸ ےτϨͰ͢ɻ

Slide 5

Slide 5 text

ࣗݾ঺հ ͜Μͳਓʹฉ͍ͯཉ͍͠ Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ ίʔυ͸ͲΜͳײ͡ ·ͱΊ ໨࣍

Slide 6

Slide 6 text

͜Μͳਓʹฉ͍ͯཉ͍͠ 8FCαΠτΛӡӦ͍ͯ͠Δਓ ϒϩάΛӡӦ͍ͯ͠Δਓ &$αΠτΛӡӦ͍ͯ͠Δਓ ɾɾɾ 8FCαΠτ͔Β Կ͔͠Βͷ੒Ռ͕ཉ͍͠ਓ

Slide 7

Slide 7 text

ࣗݾ঺հ ͜Μͳਓʹฉ͍ͯཉ͍͠ Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ ίʔυ͸ͲΜͳײ͡ ·ͱΊ ໨࣍

Slide 8

Slide 8 text

Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ 8FCαΠτઃܭͷྲྀΕ αδΣετϫʔυͷऔಘ ʢϢʔβʔχʔζ͕͋ΔΩʔϫʔυ܈ʣ ҙຯͷ͋Δմʹάϧʔϐϯά άϧʔϐϯάΛݩʹαΠτઃܭ

Slide 9

Slide 9 text

Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ 8FCαΠτઃܭͷྲྀΕ αδΣετϫʔυͷऔಘ ʢϢʔβʔχʔζ͕͋ΔΩʔϫʔυ܈ʣ ҙຯͷ͋Δմʹάϧʔϐϯά άϧʔϐϯάΛݩʹαΠτઃܭ

Slide 10

Slide 10 text

αδΣετϫʔυͷऔಘ Ϣʔβʔχʔζ͕͋ΔΩʔϫʔυ܈ΛूΊΔ

Slide 11

Slide 11 text

αδΣετϫʔυͷऔಘ Πϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫ೔ຊ Πϊϕʔγϣϯࣄྫ࠷ۙ Πϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫւ֎ ΠϊϕʔγϣϯࣄྫJQIPOF Πϊϕʔγϣϯࣄྫ࠷৽ Πϊϕʔγϣϯࣄྫ਎ۙ ΠϊϕʔγϣϯࣄྫΞϝϦΧ Πϊϕʔγϣϯࣄྫ΢ΥʔΫϚϯ ΤίγεςϜΠϊϕʔγϣϯࣄྫ ӦۀΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯΦϑΟεࣄྫ ΦʔϓϯΠϊϕʔγϣϯࣄྫ ΦʔϓϯΠϊϕʔγϣϯࣄྫ೔ຊ ΦʔϓϯσʔλΠϊϕʔγϣϯࣄྫ େࡕΨεΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯձࣾࣄྫ Πϊϕʔγϣϯ؀ڥࣄྫ Ձ஋Πϊϕʔγϣϯࣄྫ ֶੜΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫاۀ Πϊϕʔγϣϯۚ༥ࣄྫ େاۀΠϊϕʔγϣϯࣄྫ ٕज़Πϊϕʔγϣϯࣄྫ ۀքΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫ૊Έ߹Θͤ ݚڀ։ൃΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯܦࡁࣄྫ ΠϊϕʔγϣϯܦӦࣄྫ খചۀΠϊϕʔγϣϯࣄྫ খചΠϊϕʔγϣϯࣄྫ ࢠڙΠϊϕʔγϣϯࣄྫ খചۀΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯࣄྫαʔϏε ࢈ֶ࿈ܞΠϊϕʔγϣϯࣄྫ αʔϏεۀΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫू Πϊϕʔγϣϯࣄྫࣦഊ Πϊϕʔγϣϯ঎඼ࣄྫ Πϊϕʔγϣϯ৽݁߹ࣄྫ ΤίγεςϜΠϊϕʔγϣϯࣄྫ ࣾձ՝୊Πϊϕʔγϣϯࣄྫ ࣾ಺Πϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯδϨϯϚࣄྫ Πϊϕʔγϣϯ࣋ଓత੒௕ࣄྫ Πϊϕʔγϣϯࣄྫੈք Πϊϕʔγϣϯ੡඼ࣄྫ ੡଄ۀΠϊϕʔγϣϯࣄྫ ଟ༷ੑΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯ૊৫ࣄྫ Πϊϕʔγϣϯ૑ग़ࣄྫ ιʔγϟϧΠϊϕʔγϣϯࣄྫ೔ຊ ૑ൃΠϊϕʔγϣϯࣄྫ ଟ༷ੑΠϊϕʔγϣϯࣄྫ େاۀΠϊϕʔγϣϯࣄྫ μΠόʔγςΟΠϊϕʔγϣϯࣄྫ தখاۀΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯνʔϜࣄྫ Πϊϕʔγϣϯ஌ࣝ૑଄ࣄྫ ஍ҬΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯࣄྫσβΠϯࢥߟ σβΠϯΠϊϕʔγϣϯࣄྫ σδλϧΠϊϕʔγϣϯࣄྫ ഁյతΠϊϕʔγϣϯࣄྫ ඇ࿈ଓΠϊϕʔγϣϯࣄྫ ೔ཱΠϊϕʔγϣϯࣄྫ ϏδωεϞσϧΠϊϕʔγϣϯࣄྫ ϏδωεΠϊϕʔγϣϯࣄྫ ϏοάσʔλΠϊϕʔγϣϯࣄྫ ෋࢜ϑΠϧϜΠϊϕʔγϣϯࣄྫ ෋࢜௨ϑΟʔϧυΠϊϕʔγϣϯࣄྫ ෋࢜௨Πϊϕʔγϣϯࣄྫ ϓϩηεΠϊϕʔγϣϯࣄྫ ϓϩμΫτΠϊϕʔγϣϯࣄྫ ϔϧεέΞΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫຊ ΠϊϕʔγϣϯࣄྫϚΠΫϩιϑτ ϚʔέςΟϯάΠϊϕʔγϣϯࣄྫ ϢʔβʔΠϊϕʔγϣϯࣄྫ ϦόʔεΠϊϕʔγϣϯࣄྫ ΞʔΩςΫνϟϧΠϊϕʔγϣϯࣄྫ ࢈ֶ࿈ܞΠϊϕʔγϣϯࣄྫ QHΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫ NΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯͭͷػձࣄྫ λʔήοτΩʔϫʔυʮΠϊϕʔγϣϯࣄྫʯ݅

Slide 12

Slide 12 text

ҙຯͷ͋Δմʹάϧʔϐϯά ɾ೔ཱΠϊϕʔγϣϯࣄྫ ɾ෋࢜ϑΠϧϜΠϊϕʔγϣϯࣄྫ ɾେࡕΨεΠϊϕʔγϣϯࣄྫ ɾμΠόʔγςΟΠϊϕʔγϣϯࣄྫ ɾଟ༷ੑΠϊϕʔγϣϯࣄྫ ɾଟ༷ੑΠϊϕʔγϣϯࣄྫ ɾΠϊϕʔγϣϯδϨϯϚࣄྫ ɾΠϊϕʔγϣϯ࣋ଓత੒௕ࣄྫ ɾഁյతΠϊϕʔγϣϯࣄྫ اۀࣄྫ ଟ༷ੑ δϨϯϚ ໨ࢹͰ΍͍ͬͯͨͷΛɺ ػցֶशͰάϧʔϓ෼͚Λߦͬͨ

Slide 13

Slide 13 text

࣮ࡍͷਫ਼౓ ΠϊϕʔγϣϯܦӦࣄྫ Πϊϕʔγϣϯܦࡁࣄྫ Πϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫ΢ΥʔΫϚϯ ϓϩηεΠϊϕʔγϣϯࣄྫ ඇ࿈ଓΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯձࣾࣄྫ ΠϊϕʔγϣϯࣄྫΞϝϦΧ ΠϊϕʔγϣϯࣄྫαʔϏε Πϊϕʔγϣϯࣄྫاۀ Πϊϕʔγϣϯࣄྫू Πϊϕʔγϣϯࣄྫ਎ۙ Πϊϕʔγϣϯࣄྫੈք Πϊϕʔγϣϯ঎඼ࣄྫ ϓϩμΫτΠϊϕʔγϣϯࣄྫ ٕज़Πϊϕʔγϣϯࣄྫ ࢠڙΠϊϕʔγϣϯࣄྫ μΠόʔγςΟΠϊϕʔγϣϯࣄྫ ଟ༷ੑΠϊϕʔγϣϯࣄྫ ଟ༷ੑΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫࣦഊ Πϊϕʔγϣϯ૊৫ࣄྫ ֶੜΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫւ֎ ΦʔϓϯΠϊϕʔγϣϯࣄྫ ΦʔϓϯΠϊϕʔγϣϯࣄྫ೔ຊ ΠϊϕʔγϣϯࣄྫσβΠϯࢥߟ σβΠϯΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯࣄྫ࠷ۙ Πϊϕʔγϣϯࣄྫ࠷৽ Πϊϕʔγϣϯࣄྫ೔ຊ Πϊϕʔγϣϯ੡඼ࣄྫ αʔϏεۀΠϊϕʔγϣϯࣄྫ ϏδωεΠϊϕʔγϣϯࣄྫ ۀքΠϊϕʔγϣϯࣄྫ ੡଄ۀΠϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯ؀ڥࣄྫ Πϊϕʔγϣϯۚ༥ࣄྫ ιʔγϟϧΠϊϕʔγϣϯࣄྫ೔ຊ ϏδωεϞσϧΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯδϨϯϚࣄྫ Πϊϕʔγϣϯ࣋ଓత੒௕ࣄྫ ഁյతΠϊϕʔγϣϯࣄྫ খചΠϊϕʔγϣϯࣄྫ খചۀΠϊϕʔγϣϯࣄྫ খചۀΠϊϕʔγϣϯࣄྫ ෋࢜௨Πϊϕʔγϣϯࣄྫ ෋࢜௨ϑΟʔϧυΠϊϕʔγϣϯࣄྫ NΠϊϕʔγϣϯࣄྫ QHΠϊϕʔγϣϯࣄྫ ΞʔΩςΫνϟϧΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯΦϑΟεࣄྫ ΠϊϕʔγϣϯνʔϜࣄྫ ΠϊϕʔγϣϯࣄྫϚΠΫϩιϑτ Πϊϕʔγϣϯࣄྫຊ Πϊϕʔγϣϯ૑ग़ࣄྫ Πϊϕʔγϣϯ஌ࣝ૑଄ࣄྫ ΦʔϓϯσʔλΠϊϕʔγϣϯࣄྫ σδλϧΠϊϕʔγϣϯࣄྫ ϏοάσʔλΠϊϕʔγϣϯࣄྫ ϔϧεέΞΠϊϕʔγϣϯࣄྫ ϢʔβʔΠϊϕʔγϣϯࣄྫ ϦόʔεΠϊϕʔγϣϯࣄྫ ӦۀΠϊϕʔγϣϯࣄྫ ݚڀ։ൃΠϊϕʔγϣϯࣄྫ ࢈ֶ࿈ܞΠϊϕʔγϣϯࣄྫ ࢈ֶ࿈ܞΠϊϕʔγϣϯࣄྫ ࣾձ՝୊Πϊϕʔγϣϯࣄྫ ࣾ಺Πϊϕʔγϣϯࣄྫ ૑ൃΠϊϕʔγϣϯࣄྫ େࡕΨεΠϊϕʔγϣϯࣄྫ ஍ҬΠϊϕʔγϣϯࣄྫ ೔ཱΠϊϕʔγϣϯࣄྫ ෋࢜ϑΠϧϜΠϊϕʔγϣϯࣄྫ

Slide 14

Slide 14 text

࣮ࡍͷਫ਼౓ ΤίγεςϜΠϊϕʔγϣϯࣄྫ ΤίγεςϜΠϊϕʔγϣϯࣄྫ େاۀΠϊϕʔγϣϯࣄྫ େاۀΠϊϕʔγϣϯࣄྫ தখاۀΠϊϕʔγϣϯࣄྫ ΠϊϕʔγϣϯࣄྫJQIPOF Πϊϕʔγϣϯࣄྫ૊Έ߹Θͤ Πϊϕʔγϣϯ৽݁߹ࣄྫ ϚʔέςΟϯάΠϊϕʔγϣϯࣄྫ Ձ஋Πϊϕʔγϣϯࣄྫ Πϊϕʔγϣϯͭͷػձࣄྫ ·ͩ·ͩਫ਼౓͸্͛Δඞཁ͋Δ͕ɺ ໨ࢹͰҰ͔Β΍ΔΑΓ͸அવ࣌ؒ୹ॖ͕࣮ݱ

Slide 15

Slide 15 text

άϧʔϐϯάΛݩʹαΠτઃܭ اۀࣄྫ ଟ༷ੑ δϨϯϚ Πϊϕʔγϣϯࣄྫͷϖʔδ Ϣʔβʔχʔζͷ͋ΔΩʔϫʔυΛ࢖ͬͯ αΠτઃܭ͍ͯ͘͠ͷͰݕࡧʹڧ͍αΠτઃܭʹͳΔ ɾɾɾ

Slide 16

Slide 16 text

ຊொΦʔϓϯιʔεϥϘ8FCαΠτͰެ։࣮ݧ ໨త͸ɺ*5ษڧձʹڵຯΛ࣋ͬͯ΋Β͍ΞΫγϣϯΛىͯ͜͠΋Β͏ࣄ IUUQTIPNNBDIJPQFOTPVSDFMBCHJUIVCJPɹ

Slide 17

Slide 17 text

೥݄͔Β αΠτઃܭͨ͠هࣄΛ௥Ճ ຊொΦʔϓϯιʔεϥϘ8FCαΠτͰެ։࣮ݧ

Slide 18

Slide 18 text

ຊொΦʔϓϯιʔεϥϘ8FCαΠτͰެ։࣮ݧ Ωʔϫʔυ ॱҐ ݕࡧϘϦϡʔϜ ϓϩάϥϛϯάษڧձॳ৺ऀ ϓϩάϥϛϯάษڧձॳ৺ऀ JUษڧձॳ৺ऀ JUॳ৺ऀηϛφʔ VEFNZQZUIPO͓͢͢Ί ίϯύεษڧձ JUษڧձ JUษڧձ DPNQBTTษڧձ ษڧձαΠτ ΤϯδχΞษڧձ ษڧձJU EPUTษڧձ ษڧձɹJU JUษڧձΧϨϯμʔ ΤϯδχΞษڧձ JUษڧॳ৺ऀ ໊ݹ԰QZUIPO QZUIPOॳ৺ऀษڧձ Ωʔϫʔυ ॱҐ ݕࡧϘϦϡʔϜ JUษڧձେࡕ େࡕJUษڧձ ϓϩάϥϛϯάษڧձ େࡕJUษڧձ JUษڧձେࡕ QZUIPOษڧձ౦ژ େࡕษڧձJU ෱ԬJUษڧձ ϓϩάϥϛϯάษڧձ SVCZؔ੢ େࡕJUษڧձ ໊ݹ԰ษڧձ QZUIPOηϛφʔ QZUIPOVEFNZ VEFNZQZUIPO JUษڧ ૂͬͨΩʔϫʔυͰͷ্Ґදࣔͱ$7Λ֫ಘ ˞೥݄೔࣌఺ɹ"ISFGTௐ΂

Slide 19

Slide 19 text

˞೥݄೔࣌఺ɹ"ISFGTௐ΂ ຊொΦʔϓϯιʔεϥϘ8FCαΠτͰެ։࣮ݧ Ωʔϫʔυ ॱҐ ݕࡧϘϦϡʔϜ ϓϩάϥϛϯάษڧձॳ৺ऀ ϓϩάϥϛϯάษڧձॳ৺ऀ JUษڧձॳ৺ऀ JUॳ৺ऀηϛφʔ VEFNZQZUIPO͓͢͢Ί ίϯύεษڧձ JUษڧձ JUษڧձ DPNQBTTษڧձ ษڧձαΠτ ΤϯδχΞษڧձ ษڧձJU EPUTษڧձ ษڧձɹJU JUษڧձΧϨϯμʔ ΤϯδχΞษڧձ JUษڧॳ৺ऀ ໊ݹ԰QZUIPO QZUIPOॳ৺ऀษڧձ Ωʔϫʔυ ॱҐ ݕࡧϘϦϡʔϜ JUษڧձେࡕ େࡕJUษڧձ ϓϩάϥϛϯάษڧձ େࡕJUษڧձ JUษڧձେࡕ QZUIPOษڧձ౦ژ େࡕษڧձJU ෱ԬJUษڧձ ϓϩάϥϛϯάษڧձ SVCZؔ੢ େࡕJUษڧձ ໊ݹ԰ษڧձ QZUIPOηϛφʔ QZUIPOVEFNZ VEFNZQZUIPO JUษڧ ࠓճͷςʔϚʹ௚઀ؔ܎ͳ͍Ͱ͕͢ɺ ݕࡧΩʔϫʔυͷϘϦϡʔϜͱ $73ͷ૬ؔ͸ແ͍ͨΊɺ ࣮ࡍʹ͸$7ʹ͍ۙΩʔϫʔυͰ ্ҐදࣔͰ͖Δ͜ͱ͕ॏཁ ˞$73ɹίϯόʔδϣϯ཰ʢ੒໿཰ʣ ˞$7ɹίϯόʔδϣϯ

Slide 20

Slide 20 text

ࣗݾ঺հ ͜Μͳਓʹฉ͍ͯཉ͍͠ Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ ίʔυ͸ͲΜͳײ͡ ·ͱΊ ໨࣍

Slide 21

Slide 21 text

ίʔυ͸ͲΜͳײ͡ # -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array)

Slide 22

Slide 22 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) ,.FBOTΛར༻ ίʔυ͸ͲΜͳײ͡

Slide 23

Slide 23 text

LNFBOT๏ͷΠϝʔδ ΫϥελϦϯάͷख๏ͷͭͰΑ͘࢖ΘΕ͍ͯΔ

Slide 24

Slide 24 text

Ϋϥελͷத৺఺ΛϥϯμϜʹܾΊΔ ݸ਺͸Ϋϥελ਺ LNFBOT๏ͷΠϝʔδ

Slide 25

Slide 25 text

֤σʔλΛۙ͘ͷΫϥελத৺఺ʹूΊΔ LNFBOT๏ͷΠϝʔδ

Slide 26

Slide 26 text

֤σʔλͷฏۉ஋Ͱ৽͍͠த৺఺Λઃఆ͢Δ LNFBOT๏ͷΠϝʔδ

Slide 27

Slide 27 text

֤σʔλΛۙ͘ͷΫϥελத৺఺ʹूΊΔ LNFBOT๏ͷΠϝʔδ

Slide 28

Slide 28 text

֤σʔλͷฏۉ஋Ͱ৽͍͠த৺఺Λઃఆ͢Δ LNFBOT๏ͷΠϝʔδ

Slide 29

Slide 29 text

֤σʔλΛۙ͘ͷΫϥελத৺఺ʹूΊΔ LNFBOT๏ͷΠϝʔδ

Slide 30

Slide 30 text

த৺఺͕ಈ͔ͳ͘ͳΔ·Ͱ܁Γฦ͢ LNFBOT๏ͷΠϝʔδ

Slide 31

Slide 31 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) Ϋϥελ਺ ίʔυ͸ͲΜͳײ͡

Slide 32

Slide 32 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) αδΣετΩʔϫʔυ਺Λ Ͱׂͬͨ਺ࣈΛઃఆ ˞೚ҙͷ਺ࣈ ίʔυ͸ͲΜͳײ͡

Slide 33

Slide 33 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) ॳظԽͷઃఆ ίʔυ͸ͲΜͳײ͡

Slide 34

Slide 34 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) ֤σʔλʹର͢Δ Ϋϥελ൪߸Λฦ͢ ίʔυ͸ͲΜͳײ͡

Slide 35

Slide 35 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) <<> <> <> <>> ֤ΩʔϫʔυΛϕΫτϧԽͯ͠pU@QSFEJDUʹ౉͢ Ωʔϫʔυ< > Ωʔϫʔυ< > ίʔυ͸ͲΜͳײ͡

Slide 36

Slide 36 text

# -*- coding: utf-8 -*- import pandas as pd from sklearn.cluster import KMeans ίʔυൈਮ pred = KMeans( n_clusters=int(query_len/5), init='k-means++' ).fit_predict(cust_array) < > ֤ΩʔϫʔυͷΫϥελ൪߸͕ฦͬͯ͘Δ Ωʔϫʔυɿ Ωʔϫʔυɿ̍̒ ίʔυ͸ͲΜͳײ͡

Slide 37

Slide 37 text

ࣗݾ঺հ ͜Μͳਓʹฉ͍ͯཉ͍͠ Ͳ͜ͰΫϥελϦϯάΛ࢖͔ͬͨ ίʔυ͸ͲΜͳײ͡ ·ͱΊ ໨࣍

Slide 38

Slide 38 text

·ͱΊ ɾαΠτઃܭͷαδΣετΩʔϫʔυͷάϧʔϐϯάͷ࡞ ۀ͕ѹ౗తʹָʹͳͬͨ ɾαδΣετΩʔϫʔυ਺͕ଟ͘ͳΔͱɺLNFBOTͷܭ ࢉ͕࣌ؒരൃ͢Δ ɾڭࢣແ͠ͷػցֶशͷͨΊɺ݁Ռ͸໨ࢹͰଥ౰͔Ͳ͏ ͔ͷ൑அ͕ඞཁ ɾࣗવݴޠॲཧΛҰॹʹษڧ͍ͨ͠ਓ͍Ε͹੠͔͚ͯ͘ ͍ͩ͞ ɾࣗવݕࡧʹڧ͍αΠτΛ࡞Γ͍ͨਓ΋੠͔͚ͯͩ͘͞ ͍