Slide 1

Slide 1 text

3FQSFTFOUBUJPO-FBSOJOH XJUI$POUSBTUJWF 1SFEJDUJWF$PEJOH ,PTVLF.JZPTIJ 3-DPMMPRVJN WFSTJPO

Slide 2

Slide 2 text

໨࣍ w $1$ΛಡΜͩཧ༝ w ૬ޓ৘ใྔ w ີ౓ൺਪఆ w $1$ w ີ౓ൺਪఆΛར༻ͨ͠૬ޓ৘ใྔͷ࠷େԽʹΑΔ දݱֶश

Slide 3

Slide 3 text

ࣗ෼ͷϞνϕʔγϣϯ w "OJNBM"*Ͱղ͚ͳ͔ͬͨ໰୊ΛͲ͏ͱ͔͘Λߟ͍͑ͨ w *OUFSOBMNPEFM4QBUJBMSFBTPOJOH w ໨Ӆ͠͞Εͯ΋ҠಈͰ͖Δ w ၆ᛌࢹ఺஍ਤ w ؀ڥͷμΠφϛΫε w Ϙʔϧ͕Ͳ͏ಈ͔͘༧ଌͰ͖Δ w $BVTBMSFBTPOJOH

Slide 4

Slide 4 text

4IBQJOH#FMJFG4UBUFTXJUI(FOFSBUJWF &OWJSPONFOU.PEFMTGPS3- w ௕ظ༧ଌʹΑΔ၆ᛌ஍ਤදݱͷ֫ಘ w ੜ੒ϞσϧΛ࢖ͬͨ΋ͷ w $POUSBTJWF1SFEJDUJWF$PEJOHΛ࢖ͬͨ΋ͷ ,BSM(SFHPSFUBM

Slide 5

Slide 5 text

3FQSFTFOUBUJPO-FBSOJOHXJUI $POUSBTUJWF1SFEJDUJWF$PEJOH "BSPOWBOEFO0PSEFUBM

Slide 6

Slide 6 text

؍ଌ ੜ੒ Ϟσϧ ΛϞσϦϯά p(x|c) ؍ଌϞσϧΛ࢖Θͣʹ ૬ޓ৘ใྔ ࠷େԽ I(x; c) Ξϓϩʔν Y D ίϯςΩετ ΍Γ͍ͨ͜ͱ ࣌ܥྻͷίϯςΩετ$ͷදݱΛ ࣗݾڭࢣֶशͰ ֶश͍ͨ͠ Ծఆ $͔ΒະདྷͷY͕༧ଌͰ͖ΔͳΒ$͸ྑ͍දݱ $͸࣌ܥྻͷେҬతͳߏ଄͕֫ಘͰ͖͍ͯΔ %FDPEFSΛ࡞Δ %FDPEFSΛ࡞Βͳ͍

Slide 7

Slide 7 text

૬ޓ৘ใྔ

Slide 8

Slide 8 text

Τϯτϩϐʔ ) େ Τϯτϩϐʔෆ࣮֬͞౓߹͍ Τϯτϩϐʔ ) খ

Slide 9

Slide 9 text

H(A) H(A|B) I(A, B) = H(A) − H(A|B) #Λ஌Δ͜ͱͰ"ͷෆ࣮֬౓߹͍͕ ͲΕ͘Β͍ݮΔ͔ ૬ޓ৘ใྔ

Slide 10

Slide 10 text

૬ޓ৘ใྔ A = a0 A = a1 B = b0 B = b1 A = a0 A = a1 B = b0 B = b1 P(A, B) = P(A)P(B) ૬ޓ৘ใྔ I(A, B) = ∫ A ∫ B P(A, B)log P(A, B) P(A)P(B) = P(A|B)P(B)log P(B|A)P(A) P(A)P(B) = − P(B)log P(B) = H(B) = H(A) I(A, B) = ∫ A ∫ B P(A, B)log P(A, B) P(A)P(B) ࠷খͷ࣌ ࠷େͷ࣌ ৚݅෇͖෼෍Q #c" ͕ %FUFSNJOJTUJDʹͳ͍ͬͯΔ "ͷ݁Ռ͕Θ͔Ε͹ #ͷ͜ͱ͕Θ͔Δ "ͷ݁Ռ͕Θ͔ͬͯ΋ #ͷ͜ͱ͕Կ΋Θ͔Βͳ͍ = 0

Slide 11

Slide 11 text

؍ଌ ੜ੒ Ϟσϧ ΛϞσϦϯά p(x|c) ؍ଌϞσϧΛ࢖Θͣʹ ૬ޓ৘ใྔ ࠷େԽ I(x; c) Ξϓϩʔν Y D ίϯςΩετ ΍Γ͍ͨ͜ͱ ࣌ܥྻͷίϯςΩετ$ͷදݱΛ ࣗݾڭࢣֶशͰ ֶश͍ͨ͠ Ծఆ $͔ΒະདྷͷY͕༧ଌͰ͖ΔͳΒ$͸ྑ͍දݱ $͸࣌ܥྻͷେҬతͳߏ଄͕֫ಘͰ͖͍ͯΔ %FDPEFSΛ࡞Δ %FDPEFSΛ࡞Βͳ͍

Slide 12

Slide 12 text

∑ x ∑ c p(x, c)log p(x ∣ c) p(x) I(x; c) = ∑ x ∑ c p(x, c)log p(x, c) p(x)p(c) ∑ x ∑ c p(x, c)log p(x|c)p(c) p(x)p(c) Y D ίϯςΩετ p(x) p(x|c) ͜ͷ૬ޓ৘ใྔΛ࠷େԽ͢ΔΑ͏ʹ DͷදݱΛֶश͍ͨ͠ ૬ޓ৘ใྔʹ͸ີ౓ൺͷ ܗ͕ग़ͯ͘Δ

Slide 13

Slide 13 text

ີ౓ൺਪఆ

Slide 14

Slide 14 text

r(x) = pA (x) pB (x) {xA i }nA i=1 {xB j }nB j=1 αϯϓϧ ݸˠϥϕϧ"ׂΓ౰ͯ nA αϯϓϧ ݸˠϥϕϧ#ׂΓ౰ͯ nB લఏೋͭͷ֬཰ີ౓෼෍ͷαϯϓϧ͸ಘΒΕ͍ͯΔ͕֬཰෼෍͸Θ͔Βͳ͍ ໨తೋͭͷ෼෍ͷ֬཰ີ౓ͷൺ཰Λɺαϯϓϧ͔Βֶशͨ͠෼ྨثΛ༻͍ͯਪఆ͢Δ pA (x) pB (x) ൺ཰͕r(x)

Slide 15

Slide 15 text

pA (x) = p(x|y = A) pB (x) = p(x|y = B) r(x) = pA (x) pB (x) = p(x|y = A) p(x|y = B) = p(y = A|x)p(x) p(y = A) p(y = B|x)p(x) p(y = B) = p(y = B) p(y = A) p(y = A|x) p(y = B|x) ̂ r(x) = nB nA ̂ p(y = A|x) ̂ p(y = B|x) = nB nA ̂ p(y = A|x) 1 − ̂ p(y = A|x) ີ౓ൺͷۙࣅ ෼ྨثΛֶश αϯϓϧ͕෼෍"͔Βͷ΋ͷ͔#͔Βͷ΋ͷ͔Λ෼ྨ͢Δ෼ྨثΛ ֶश͢Δͱͦͷग़ྗͷ֬཰͕ີ౓ൺʹ࢖͑Δ

Slide 16

Slide 16 text

$1$

Slide 17

Slide 17 text

ͱ ͷ૬ޓ৘ใྔΛٻΊΔͷͰ͸ͳ͘ɺ ΛΤϯίʔυͨ͠ ͱ ͷ૬ޓ৘ใྔͷ࠷େԽΛߟ͑Δ x c x z c I(x, c) ≥ I(z, c)

Slide 18

Slide 18 text

fk (xt+k , ct) ∝ p (xt+k ∣ ct) p (xt+k) fk (xt+k , ct) = exp (zT t+k Wk ct) ີ౓ൺ͸ඞͣਖ਼ͷ஋ Y D ίϯςΩετ p(x) p(x|c) ີ౓ൺΛ ͱ ͷؔ਺ ͰϞσϧԽ͢Δ z c f ͸༧ଌઌεςοϓ਺ FYd k

Slide 19

Slide 19 text

ℒN = − X log fk (xt+k , ct) ∑ xj ∈X fk (xj , ct) X = {x1 , ⋯xN } w /ݸͷத͔ΒQPTJUJWFTBNQMFΛબͿ$BUFHPSJDBM෼෍ͷ 4PGUNBYDSPTTFOUSPQZMPTTͷܗ w -PTTͷ࠷దԽʹΑΓ w B ͕ ʹൺྫ͢Δ஋ ʹͳΔ w C ૬ޓ৘ใྔ͕࠷େԽ͞ΕΔ fk (xt+k , ct) p(xt+k |ct ) p(xt+k ) ͔Βݸͷ1PTJUJWFTBNQMF ͔Β/ݸͷ/FHBUJWFTBNQMF p(xt+k |ct ) p(xt+k ) I(xt+k , ct ) ≥ log(N) − ℒ ࠷దԽ͢Δ-PTT fk (xt+k , ct) = exp (zT t+k Wk ct) QPTJUJWFTBNQMFͰͷf QPTJUJWFTBNQMFOFHBUJWFTBNQMFͷ ͷ߹ܭ f

Slide 20

Slide 20 text

p(x0 |ct )p(x1 ) p(x0 |ct )p(x1 ) + p(x1 |ct )p(x0 ) ྫ/ͷ৔߹ αϯϓϧ ͕͋Δ࣌ɺ ͕QPTJUJWFTBNQMFͰ͋Δ֬཰͸ʁ QPTJUJWF͕ͲΕ͔ͷબ୒ࢶ͸ ͱ ͷೋ௨Γߟ͑ΒΕΔ x0 , x1 x0 x0 x1 ͕QPTJUJWF ͕OFHBUJWFͰ͋Δ৔߹ͷൃੜ֬཰ x0 x1 ͕QPTJUJWF ͕OFHBUJWFͰ͋Δ৔߹ͷൃੜ֬཰ x1 x0 p(x0 |ct ) p(x0 ) p(x0 |ct ) p(x0 ) + p(x1 |ct ) p(x1 ) Ͱ྆ลׂΔͱ p(x0 )p(x1 ) B ͕ ʹͳΔ͜ͱͷઆ໌ fk (xt+k , ct) p(xt+k |ct ) p(xt+k )

Slide 21

Slide 21 text

p(d = i|X, ct ) = p(xi |ct )∏ l≠i p(xi ) ∑N j=1 {p(xj |ct )∏ l≠j p(xl )} લϖʔδͷઆ໌ΛҰൠԽ αϯϓϧ ͕QPTJUJWFTBNQMFͰ͋Δ֬཰ xi p(xi |ct ) p(xi ) QPTJUJWFTBNQMFݸ OFHBUJWFTBNQMF/ݸ = p(xi |ct )∏ l≠i p(xi ) ∏ l p(xl ) ∑N j=1 { p(xj |ct )∏ l≠j p(xl ) ∏ l p(xl ) } = p(xi |ct ) p(xi ) ∑N j=1 { p(xj |ct ) p(xj ) } ℒN = − X log fk (xt+k , ct) ∑ xj ∈X fk (xj , ct) B ͕ ʹͳΔ͜ͱͷઆ໌ fk (xt+k , ct) p(xt+k |ct ) p(xt+k ) -PTTͷ࠷దԽʹΑΓαϯϓϧ ͕ QPTJUJWFTBNQMFͰ͋Δ֬཰ʹऩଋ͢Δ xt+k

Slide 22

Slide 22 text

ℒopt N = − X log p(xt+k |ct ) p(xt+k ) p(xt+k |ct ) p(xt+k ) + ∑ xj ∈Xneg p(xj |ct ) p(xj ) = X log p(xt+k |ct ) p(xt+k ) + ∑ xj ∈Xneg p(xj |ct ) p(xj ) p(xt+k |ct ) p(xt+k ) = X log 1 + p(xt+k ) p(xt+k |ct ) ∑ xj ∈Xneg p(xj |ct ) p(xj ) ≈ X log [ 1 + p(xt+k ) p(xt+k |ct ) (N − 1)xj p(xj |ct ) p(xj ) ] ͔Β/ݸαϯϓϦϯά͖ͯͯ͠ ΛٻΊͯ࿨ΛऔΔ p(x) p(x|c) p(x) αϯϓϦϯάΛظ଴஋ܭࢉʹஔ͖׵͑ ≈ X log [ 1 + p(xt+k ) p(xt+k |ct ) (N − 1) ] xj p(xj |ct ) p(xj ) = ∫ p(xj ) p(xj |ct ) p(xj ) dxj = ∫ p(xj |ct )dxj = 1 = X log p(xt+k ) p(xt+k |ct ) N + { 1 − p(xt+k ) p(xt+k |ct ) } ≥ X log [ p(xt+k ) p(xt+k |ct ) N ] ظ଴஋ܭࢉऔΔͱΑΓখ͘͞ͳΔ = − I(xt+k , ct ) + log(N) Ͱظ଴஋ औ͍ͬͯΔ p(xt+k , ct ) I(xt+k , ct ) = ∫ p(xt+k , ct ) p(xt+k |ct ) p(xt ) X = {x1 , ⋯xN } ݸͷQPTJUJWFTBNQMFͱ/ݸͷOFHBUJWFTBNQMF C -PTTͷ࠷খԽ͕૬ޓ৘ใྔͷ࠷େԽʹͳΔઆ໌

Slide 23

Slide 23 text

ℒN = − X log fk (xt+k , ct) ∑ xj ∈X fk (xj , ct) X = {x1 , ⋯xN } /ݸͷαϯϓϧͷத͔ΒQPTJUJWFTBNQMFΛબͿ$BUFHPSJDBM෼෍ͷ TPGUNBYDSPTTFOUSPQZMPTTͷ࠷దԽ ͔ΒݸͷQPTJUJWFTBNQMF ͔Β/ݸͷOFHBUJWFTBNQMF p(xt+k |ct ) p(xt+k ) I(xt+k , ct ) ≥ log(N) − ℒ MPTTΛԼ͛Δ ૬ޓ৘ใྔ͕ߴ͘ͳΔ ͕ີ౓ൺ ʹൺྫ͢Δ஋ ʹͳΔ ີ౓ൺ͕ਖ਼͘͠ٻ·Δ fk

Slide 24

Slide 24 text

FOD FOD zpred ztrue znoise W zT pred ztrue ˠେ͖͘ zT pred znoise ˠখ͘͞ c w ୯ʹ ͕ Λ.4&Ͱ༧ଌ͢Δ͚ͩͩͱ %FDPEFS͕ແ͍ͷͰ ͕༧ଌ͠΍͍͢USJWJBMͳදݱʹFODPEF͞Εͯ͠·͏ શ෦ͱ͔ w ༧ଌର৅͕QPTJUJWFTBNQMFͱͳΔ࣮ࡍͷ֬཰෼෍ʹ͚ۙͮΔͨΊʹ େɺ খͱ͢ΔΑ͏ͳ੍໿͕ಇ͘ͷͰɺͦΕ͕๷͛Δ zpred ztrue z zT pred znoise zT pred znoise ௚ײతͳཧղ QPTJUJWF TBNQMF OFHBUJWF TBNQMFT z pred ztrue znoise

Slide 25

Slide 25 text

ධՁ

Slide 26

Slide 26 text

"VEJP Իૉ෼ྨ DMBTT ࿩ऀ෼ྨ DMBTT $1$ͰTFMGTVQFSWJTFEͰ ֶशͨ͠දݱD͔Βઢܗ෼ྨثΛֶश w 1$.ԻݯΛNTFD୯ҐͰ$POWͰFODPEF ࣍ݩ w (363//ͰDΛFODPEF ࣍ݩ w $1$ͰTUFQઌͷ༧ଌ w / OFHBUJWFTBNQMFݸʁ

Slide 27

Slide 27 text

"VEJP Կεςοϓઌ·Ͱ༧ଌ͢Δ͔ /FHBUJWF4BNQMFΛͲ͔͜ΒऔΔ͔ FYDMಉҰγʔέϯε͔ΒΛআ͘

Slide 28

Slide 28 text

"VEJP QPTJUJWFTBNQMFͷ༧ଌਫ਼౓ ͱ༧ଌTUFQઌͷؔ܎ දݱ$ΛU4/&ʹ͔͚ͨ݁Ռͷ ࿩ऀͷ৭෼͚

Slide 29

Slide 29 text

7JTPO w *NBHF/FUͷYͷը૾Λ0WFSMBQͤ͞ͳ͕Β YαΠζͷYݸͷύονʹ෼͚Δ w 3FT/FUͰ࣍ݩͷදݱ ʹ&ODPEF w 1JYFM3//ͷܗࣜͰ ʹͯ͠ɺԼํ޲ͷύονͷ༧ଌ z Ct

Slide 30

Slide 30 text

7JTPO w ଞͷ4FMGTVQFSWJTFEख๏ͱͷൺֱ w Yݸͷ࣍ݩͷ Λݸͷ࣍ݩͷϕΫτϧʹNBYQPPM w ͦͷ࣍ݩϕΫτϧ͔ΒMJOFBSDMBTTJpFSͰ*NBHF/FUMBCFM ϥϕϧ ͷ෼ྨΛֶश z

Slide 31

Slide 31 text

/-1 w লུ

Slide 32

Slide 32 text

ڧԽֶश w "$ͷ3//ͷTUFQVOSPMMʹରͯ͠ɺTUFQͷ༧ଌΛ෇Ճ͢Δ $1$Ͱͷ༧ଌ͸MJOFBSͳγϯϓϧͳߏ଄ w ڧԽֶशͰ͸ޙଓͷBDUJPOʹΑͬͯ༧ଌର৅ͷදݱ΋มΘͬͯ͘Δ͸ͣ $1$c"DUJPOͱ͍͏ผ࿦จʹͯ

Slide 33

Slide 33 text

$1$c"DUJPO w $1$Ͱͷ༧ଌΛ"DUJPOͰ৚݅෇͚ΔΑ͏ʹͨ͠ /FVSBM1SFEJDUJWF#FMJFG3FQSFTFOUBUJPOT ;IBPIBO%BOJFM(VPFUBM

Slide 34

Slide 34 text

·ͱΊ w ෼ྨ໰୊Λར༻ͨ͠ີ౓ൺਪఆΛߦ͏͜ͱʹΑΔ ૬ޓ৘ใྔͷ࠷େԽ w ந৅తͳදݱΛ؍ଌϞσϧ %FDPEFS ͳ͠Ͱ֫ಘͰ͖Δ w ܭࢉίετ͕௿͍ w "VEJP 7JTJPO FUDͷ͍Ζ͍ΖͳυϝΠϯʹద༻Մೳ