Slide 1

Slide 1 text

Proofs Without Words Dana C. Ernst Northern Arizona University Mathematics & Statistics Department http://danaernst.com MAT 123 October 23, 2017 D.C. Ernst Proofs Without Words 1 / 19

Slide 2

Slide 2 text

Warning! Pictures can be misleading! D.C. Ernst Proofs Without Words 2 / 19

Slide 3

Slide 3 text

Warning! Pictures can be misleading! D.C. Ernst Proofs Without Words 2 / 19

Slide 4

Slide 4 text

Warning! Pictures can be misleading! Theorem? Hmmm, it looks like 32.5 = 31.5. D.C. Ernst Proofs Without Words 2 / 19

Slide 5

Slide 5 text

Play Time Let’s play a game. • I’ll show you a picture, • You see if you can figure out what mathematical fact it describes or proofs. D.C. Ernst Proofs Without Words 3 / 19

Slide 6

Slide 6 text

D.C. Ernst Proofs Without Words 4 / 19

Slide 7

Slide 7 text

Theorem For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2. D.C. Ernst Proofs Without Words 4 / 19

Slide 8

Slide 8 text

D.C. Ernst Proofs Without Words 5 / 19

Slide 9

Slide 9 text

This the same as the previous theorem, but with a different visual proof. D.C. Ernst Proofs Without Words 5 / 19

Slide 10

Slide 10 text

This the same as the previous theorem, but with a different visual proof. Theorem For all n ∈ N, 1 + 3 + 5 + · · · + (2n − 1) = n2. D.C. Ernst Proofs Without Words 5 / 19

Slide 11

Slide 11 text

D.C. Ernst Proofs Without Words 6 / 19

Slide 12

Slide 12 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = n(n + 1) 2 . D.C. Ernst Proofs Without Words 6 / 19

Slide 13

Slide 13 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = n(n + 1) 2 . Note The numbers Tn := 1 + 2 + · · · + n are called triangular numbers. D.C. Ernst Proofs Without Words 6 / 19

Slide 14

Slide 14 text

D.C. Ernst Proofs Without Words 7 / 19

Slide 15

Slide 15 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = C(n + 1, 2) := (n + 1)! 2!(n − 1)! . D.C. Ernst Proofs Without Words 7 / 19

Slide 16

Slide 16 text

Theorem For all n ∈ N, 1 + 2 + · · · + n = C(n + 1, 2) := (n + 1)! 2!(n − 1)! . Corollary For all n ∈ N, C(n + 1, 2) = n(n + 1) 2 . D.C. Ernst Proofs Without Words 7 / 19

Slide 17

Slide 17 text

The nth pentagonal number is defined to be Pn := 3n2 − n 2 . D.C. Ernst Proofs Without Words 8 / 19

Slide 18

Slide 18 text

The nth pentagonal number is defined to be Pn := 3n2 − n 2 . D.C. Ernst Proofs Without Words 8 / 19

Slide 19

Slide 19 text

The nth pentagonal number is defined to be Pn := 3n2 − n 2 . Theorem Pn = 3Tn−1 + n. D.C. Ernst Proofs Without Words 8 / 19

Slide 20

Slide 20 text

D.C. Ernst Proofs Without Words 9 / 19

Slide 21

Slide 21 text

Theorem (Nicomachus’ Theorem) For all n ∈ N, 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2. D.C. Ernst Proofs Without Words 9 / 19

Slide 22

Slide 22 text

Theorem (Nicomachus’ Theorem) For all n ∈ N, 13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2. Corollary For all n ∈ N, 13 + 23 + · · · + n3 = ( n(n + 1) 2 ) 2 . D.C. Ernst Proofs Without Words 9 / 19

Slide 23

Slide 23 text

D.C. Ernst Proofs Without Words 10 / 19

Slide 24

Slide 24 text

Theorem 2π > 6 D.C. Ernst Proofs Without Words 10 / 19

Slide 25

Slide 25 text

D.C. Ernst Proofs Without Words 11 / 19

Slide 26

Slide 26 text

Theorem (Pythagorean Theorem) If a, b, c ∈ N are the lengths of the sides of a right triangle, where c the length of the hypotenuse, then a2 + b2 = c2. D.C. Ernst Proofs Without Words 11 / 19

Slide 27

Slide 27 text

D.C. Ernst Proofs Without Words 12 / 19

Slide 28

Slide 28 text

Theorem (Pythagorean Theorem) If a, b, c ∈ N are the lengths of the sides of a right triangle, where c the length of the hypotenuse, then a2 + b2 = c2. D.C. Ernst Proofs Without Words 12 / 19

Slide 29

Slide 29 text

D.C. Ernst Proofs Without Words 13 / 19

Slide 30

Slide 30 text

Theorem We have the following summation formula: ∞ ∑ k=1 ( 1 2 ) k = 1. D.C. Ernst Proofs Without Words 13 / 19

Slide 31

Slide 31 text

D.C. Ernst Proofs Without Words 14 / 19

Slide 32

Slide 32 text

Hint Focus on a single color. D.C. Ernst Proofs Without Words 14 / 19

Slide 33

Slide 33 text

Hint Focus on a single color. Theorem We have the following summation formula: ∞ ∑ k=1 ( 1 4 ) k = 1 3 . D.C. Ernst Proofs Without Words 14 / 19

Slide 34

Slide 34 text

D.C. Ernst Proofs Without Words 15 / 19

Slide 35

Slide 35 text

Theorem We have the following summation formula: ∞ ∑ k=1 ( 1 3 ) k = 1 2 . D.C. Ernst Proofs Without Words 15 / 19

Slide 36

Slide 36 text

D.C. Ernst Proofs Without Words 16 / 19

Slide 37

Slide 37 text

Theorem A circle of radius r has area πr2. D.C. Ernst Proofs Without Words 16 / 19

Slide 38

Slide 38 text

D.C. Ernst Proofs Without Words 17 / 19

Slide 39

Slide 39 text

Theorem The alternating sum of the first n odd natural numbers is n. In other words, for all n ∈ N, n ∑ k=1 (−1)n−k(2k − 1) = n. D.C. Ernst Proofs Without Words 17 / 19

Slide 40

Slide 40 text

D.C. Ernst Proofs Without Words 18 / 19

Slide 41

Slide 41 text

Theorem We have the following fact concerning integrals: ∫ π/2 0 sin2(x) dx = π 4 = ∫ π/2 0 cos2(x) dx. D.C. Ernst Proofs Without Words 18 / 19

Slide 42

Slide 42 text

Sources MathOverflow: mathoverflow.net/questions/8846/proofs-without-words Art of Problem Solving: artofproblemsolving.com/Wiki/index.php/Proofs_ without_words Wikipedia: en.wikipedia.org/wiki/Squared_triangular_number Strogatz, NY Times: opinionator.blogs.nytimes.com/2010/04/04/ take-it-to-the-limit/ D.C. Ernst Proofs Without Words 19 / 19