Slide 6
Slide 6 text
[Convington+ 2016] Covington, Paul, et al. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016.
[Lie+ 2015] Liu, Qiang et al. "A convolutional click prediction model." Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015.
[Qu+ 2016] Qu, Yanru et al.. “Product-based neural networks for user response prediction." Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016.
[Shan+ 2016] Shan, Ying, et al. "Deep crossing: Web-scale modeling without manually crafted combinatorial features." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.
[Xiao+ 2017] Xiao, Jun, et al. "Attentional factorization machines: Learning the weight of feature interactions via attention networks." arXiv preprint arXiv:1708.04617 (2017).
[Zhang+ 2016] Zhang, Weinan et al. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.
[Zhou+ 2018] Zhou, Guorui, et al. "Deep interest network for click-through rate prediction." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 2018.
[Cheng+ 2016] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.
[Guo+ 2017] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI
Press, 2017.
Introduction
● 近年提案されているCTR予測モデル
○ 深層学習ベースの手法
[Convington+ 2016; Liu+ 2015; Shan+ 2016; Xiao+ 2017; Zhang+ 2016; Zhou+ 2018]
✗ 偏った高次元特徴の相互作用を学習してしまったり
シンプルな低次元特徴を捉えられなかったりする
○ 高次元特徴・低次元特徴の相互作用を捉えるモデル
■ Wide & Deep [Cheng+ 2016]
■ Deep FM [Guo+ 2017]
6
Introduction > Model > Experiments > Conclusion
✗ CTR予測に有効なフィールド情報を有効活用できていない