Slide 1

Slide 1 text

TELLING STORIES WITH DATA VISUALIZATION Chris Keathley / @ChrisKeathley / [email protected]

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

Lets talk about…

Slide 4

Slide 4 text

Lets talk about… Visualizations

Slide 5

Slide 5 text

Lets talk about… Visualizations Common mistakes and how to fix them

Slide 6

Slide 6 text

Lets talk about… Visualizations Common mistakes and how to fix them Case Study

Slide 7

Slide 7 text

Visualizations are important

Slide 8

Slide 8 text

“Numerical calculations are exact, but graphs are rough” - other people

Slide 9

Slide 9 text

55.3846,97.1795 51.5385,96.0256 46.1538,94.4872 42.8205,91.4103 40.7692,88.3333 38.7179,84.8718 35.641,79.8718 33.0769,77.5641 28.9744,74.4872 26.1538,71.4103 23.0769,66.4103 22.3077,61.7949 22.3077,57.1795 23.3333,52.9487 25.8974,51.0256 29.4872,51.0256 32.8205,51.0256 35.3846,51.4103 40.2564,51.4103 44.1026,52.9487 46.6667,54.1026 50,55.2564 53.0769,55.641 56.6667,56.0256 59.2308,57.9487 61.2821,62.1795 61.5385,66.4103 61.7949,69.1026 57.4359,55.2564 54.8718,49.8718 52.5641,46.0256 48.2051,38.3333 49.4872,42.1795 51.0256,44.1026 45.3846,36.4103 42.8205,32.5641 38.7179,31.4103 35.1282,30.2564 32.5641,32.1795 30,36.7949 33.5897,41.4103 36.6667,45.641 38.2051,49.1026 29.7436,36.0256 29.7436,32.1795 30,29.1026 32.0513,26.7949 35.8974,25.2564 41.0256,25.2564 44.1026,25.641 47.1795,28.718 49.4872,31.4103 51.5385,34.8718 53.5897,37.5641 55.1282,40.641 56.6667,42.1795 59.2308,44.4872 62.3077,46.0256 64.8718,46.7949 67.9487,47.9487 70.5128,53.718 71.5385,60.641 71.5385,64.4872 46.9231,79.8718 48.2051,84.1026 50,85.2564 53.0769,85.2564 55.3846,86.0256 56.6667,86.0256 56.1538,82.9487 53.8462,80.641 51.2821,78.718 50,78.718 47.9487,77.5641 29.7436,59.8718 29.7436,62.1795 31.2821,62.5641 57.9487,99.4872 61.7949,99.1026 64.8718,97.5641 68.4615,94.1026 70.7692,91.0256 72.0513,86.4103 73.8462,83.3333 76.6667,75.2564 77.6923,71.4103 79.7436,66.7949 81.7949,60.2564 83.3333,55.2564 85.1282,51.4103 86.4103,47.5641 87.9487,46.0256 89.4872,42.5641 93.3333,39.8718 95.3846,36.7949 98.2051,33.718 56.6667,40.641 59.2308,38.3333 60.7692,33.718 63.0769,29.1026 64.1026,25.2564 64.359,24.1026 74.359,22.9487 71.2821,22.9487 67.9487,22.1795 76.6667,75.2564 77.6923,71.4103 79.7436,66.7949 81.7949,60.2564 83.3333,55.2564 85.1282,51.4103 86.4103,47.5641 87.9487,46.0256 89.4872,42.5641 93.3333,39.8718 95.3846,36.7949 98.2051,33.718 56.6667,40.641 59.2308,38.3333 60.7692,33.718 63.0769,29.1026 64.1026,25.2564 64.359,24.1026 74.359,22.9487 71.2821,22.9487 67.9487,22.1795 65.8974,20.2564 63.0769,19.1026 61.2821,19.1026 58.7179,18.3333 55.1282,18.3333 52.3077,18.3333 49.7436,17.5641 47.4359,16.0256 44.8718,13.718 48.7179,14.8718 51.2821,14.8718 54.1026,14.8718 56.1538,14.1026 52.0513,12.5641 48.7179,11.0256 47.1795,9.8718 46.1538,6.0256 50.5128,9.4872 53.8462,10.2564 57.4359,10.2564 60,10.641

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

Alberto Cairo @AlbertoCairo thefunctionalart.com

Slide 13

Slide 13 text

Anscombe’s Quartet

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

Tons of tools

Slide 18

Slide 18 text

D3 graphviz matplotlib R Canvas Emacs org mode

Slide 19

Slide 19 text

“telling stories”

Slide 20

Slide 20 text

“The viewer can see the entire narrative” - me just now

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

I live here

Slide 23

Slide 23 text

“Some people are less than a mile from [the utility’s] service area but, by law, can't get its broadband”

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

“Facebook’s offer price was $38 a share, giving the company a valuation of $104 billion, nearly four times larger than google in 2004” - Washington Post

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

http responses

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

FICTION

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Unicorn

Slide 37

Slide 37 text

The real world Unicorn

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

VISUALIZATION IS ONE VIEWPOINT

Slide 40

Slide 40 text

“THIS IS HOW THE SERVER IS DOING”

Slide 41

Slide 41 text


 “THIS IS HOW OUR USERS ARE DOING”

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

(UNCONCIOUS) BIAS

Slide 44

Slide 44 text

Common mistakes and how to solve them

Slide 45

Slide 45 text

Pie Charts

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

Don’t use pie charts

Slide 48

Slide 48 text

Colors

Slide 49

Slide 49 text

Color is filled with subtle bias

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

Use color deliberately and sparingly

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

Avoid using red and green in the same display

Slide 54

Slide 54 text

ChartJunk and Noise

Slide 55

Slide 55 text

Initial design goals

Slide 56

Slide 56 text

Initial design goals

Slide 57

Slide 57 text

small multiples

Slide 58

Slide 58 text

Initial design goals

Slide 59

Slide 59 text

Sparklines

Slide 60

Slide 60 text

Initial design goals

Slide 61

Slide 61 text

Labels and Scales

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

Use labels to provide clarity

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

Pattern Matching

Slide 67

Slide 67 text

No content

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

Correlation and Causation

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

http://tylervigen.com/spurious-correlations tyler vigen

Slide 74

Slide 74 text

The clustering illusion and confirmation bias

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

“That looks great!” - Our client

Slide 81

Slide 81 text

“That looks wrong” -Us

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

Apophenia

Slide 84

Slide 84 text

No content

Slide 85

Slide 85 text

“I want this to be true and it looks like it is” Confirmation bias

Slide 86

Slide 86 text

The clustering illusion

Slide 87

Slide 87 text

No content

Slide 88

Slide 88 text

Case Study: Lunch attendance

Slide 89

Slide 89 text

THE PROBLEM:

Slide 90

Slide 90 text

HYPOTHESIS

Slide 91

Slide 91 text

AN HYPOTHESIS MUST…

Slide 92

Slide 92 text

AN HYPOTHESIS MUST… MAKE AN ASSERTION

Slide 93

Slide 93 text

AN HYPOTHESIS MUST… MAKE AN ASSERTION BE FALSIFIABLE

Slide 94

Slide 94 text

HYPOTHESIS HOW DO WE GET MORE PEOPLE TO SHOW UP TO OUR MEETUP?

Slide 95

Slide 95 text

HYPOTHESIS PEOPLE ATTEND TOPICS THEY’RE INTERESTED IN

Slide 96

Slide 96 text

The whole story

Slide 97

Slide 97 text

Lets Remove the chart junk

Slide 98

Slide 98 text

TODO: BASIC ATTENDANCE

Slide 99

Slide 99 text

Maxima

Slide 100

Slide 100 text

Minima Maxima

Slide 101

Slide 101 text

TODO: ADD EXAMPLE OF ATTENDANCE

Slide 102

Slide 102 text

TODO: ADD EXAMPLE OF ATTENDANCE Frontend

Slide 103

Slide 103 text

TODO: ADD EXAMPLE OF ATTENDANCE Technology

Slide 104

Slide 104 text

CONSIDER THE VIEWPOINT

Slide 105

Slide 105 text

TODO: MEMBERS WITH ATTENDANCE

Slide 106

Slide 106 text

HYPOTHESIS PEOPLE ATTEND TOPICS THEY’RE INTERESTED IN

Slide 107

Slide 107 text

TODO: MEMBERS WITH ATTENDANCE Team Pizza

Slide 108

Slide 108 text

TODO: MEMBERS WITH ATTENDANCE Team Pizza Long tail

Slide 109

Slide 109 text

HYPOTHESIS PEOPLE ATTEND TALKS THAT THEIR FRIENDS ATTEND

Slide 110

Slide 110 text

TODO: MEMBERS GROUPED

Slide 111

Slide 111 text

TODO: MEMBERS GROUPED

Slide 112

Slide 112 text

TODO: MEMBERS GROUPED

Slide 113

Slide 113 text

TODO: MEMBERS GROUPED Friends

Slide 114

Slide 114 text

Conclusion

Slide 115

Slide 115 text

Consider your biases

Slide 116

Slide 116 text

Iterate

Slide 117

Slide 117 text

Let the data speak

Slide 118

Slide 118 text

Resources Edward Tufte Alberto Cairo informationisbeautiful.net

Slide 119

Slide 119 text

Thanks! Chris Keathley / @ChrisKeathley / [email protected]