Slide 44
Slide 44 text
Missing Data References
Allison, P. D. (2012). Handling Missing Data by Maximum Likelihood. SAS Global Forum, Statistics and Data Analysis, Paper 312-2012.
Dempster, A.P., Laird, N. M, & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society
Faria, R., Gomes, M., Epstein, D., & White, I.R. (2014). A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted
Within Randomised Controlled Trials. PharmacoEconomics
Little, R. J. A. & Rubin, D. B. (1987). Statistical Analysis with Missing Data. 1st ed. New York: Wiley
Little, R. J. A. (1988) A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical
Association, 83:1198–1202.
Kim, K. H. & Bentler, P. (2002). Tests of homogeneity of means and covariance matrices for multivariate incomplete data. Psychometrika.
67:609–624.
Rosenbaum, P.R., & Rubin, D.B., (2983) The central role of the propensity score in observational studies for causal inference. Biometrika,
70:41-55
Rubin, D. B. (1974) Estimating casual effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology,
66, 688-701.
Rubin, D. B. (1987) Multiple Imputation for Nonresponse in Surveys. New York: Wiley