Slide 1

Slide 1 text

Ranking Visualizations of Correlation using Weber’s Law Lane Harrison, Fumeng Yang, Steven Franconeri*, Remco Chang Tufts University, *Northwestern University

Slide 2

Slide 2 text

Many techniques for the same data…

Slide 3

Slide 3 text

Comparative Evaluation

Slide 4

Slide 4 text

Comparative Evaluation … 8 C2 = 28 condition 1 condition 2 condition 3 conditions

Slide 5

Slide 5 text

Model-based Evaluation

Slide 6

Slide 6 text

Model-based Evaluation M1 Model the performance of scatterplots on a task.

Slide 7

Slide 7 text

Model-based Evaluation M1 M2 M3 M4 M5 Model the performance of visualizations on a task.

Slide 8

Slide 8 text

Model-based Evaluation M1 M2 M3 M4 M5 M3 M2 M4 M1 M5 > > > >

Slide 9

Slide 9 text

Model-based Evaluation M1 M2 M3 M4 M5 M3 M2 M4 M1 M5 Models of performance can be compared directly and efficiently. Models are scalable and falsifiable. > > > >

Slide 10

Slide 10 text

Model-based Evaluation M1 M2 M3 M4 M5 M3 M2 M4 M1 M5 To be effective, models must be grounded in theory. > > > >

Slide 11

Slide 11 text

Model-based Evaluation M1 M2 M3 M4 M5 M3 M2 M4 M1 M5 To be effective, models must be grounded in theory. vs vs > > > >

Slide 12

Slide 12 text

A model grounded in theory: The Perception of Correlation in Scatterplots Ron Rensink, Gideon Baldridge (2010) - Used psychophysiological methodologies.

Slide 13

Slide 13 text

A model grounded in theory: The Perception of Correlation in Scatterplots Ron Rensink, Gideon Baldridge (2010) - Used psychophysiological methodologies. - Inferred just-noticeable differences for scatterplots depicting positive correlations.

Slide 14

Slide 14 text

A model grounded in theory: The Perception of Correlation in Scatterplots Ron Rensink, Gideon Baldridge (2010) - Used psychophysiological methodologies. - Established that the perception of correlation in scatterplots can be modeled using Weber’s law. - Inferred just-noticeable differences for scatterplots depicting positive correlations.

Slide 15

Slide 15 text

Psychophysiological methodology: 
 Which is more correlated?

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

Same difference
 but harder, why? 1.0 0.95 0.35 0.3

Slide 23

Slide 23 text

just-noticeable differences (jnd)

Slide 24

Slide 24 text

imagine yourself in a dark room…

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

JND: the smallest difference necessary to perceive two stimuli as being different.

Slide 32

Slide 32 text

after many trials…

Slide 33

Slide 33 text

0. 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND Rensink plotted JND as a function of correlation (r) (bright room) (dark room) better worse

Slide 34

Slide 34 text

0. 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND To see a difference in data with correlation of 0.3, the comparison r must be +/- 0.2. (dark room) (bright room) better worse

Slide 35

Slide 35 text

increase to 0.5! To see a diff,

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

decrease to 0.1! To see a diff,

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

Rensink’s insight…

Slide 40

Slide 40 text

;ďͿƐĐĂƩĞƌƉůŽƚ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ;ĐͿƐĐĂƩĞƌƉůŽƚƌĞŐƌĞƐƐŝŽŶ rA 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ 0.0 0.00 0.06 0.12 0.18 0.24 Because the trend of JND & correlation is linear… 0 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND “The perception of correlation in scatterplots can be modeled using Weber’s Law.” (dark room) (bright room) better worse

Slide 41

Slide 41 text

Weber's Law - sound, taste, weight, brightness, line-length - model for low-level perceptual discrimination ΔP = k * ΔI _ I

Slide 42

Slide 42 text

Weber's Law - sound, taste, weight, brightness, line-length - model for low-level perceptual discrimination ΔP = k * ΔI _ I

Slide 43

Slide 43 text

Weber's Law ΔP = k * ΔI I _

Slide 44

Slide 44 text

ΔP = k * ΔI I _ Perceived diff

Slide 45

Slide 45 text

ΔP = k * ΔI I _ Perceived diff Actual intensity of Stimulus

Slide 46

Slide 46 text

ΔP = k * ΔI I _ Actual intensity of Stimulus Change in Intensity Perceived diff

Slide 47

Slide 47 text

ΔP = k * ΔI I _ Actual intensity of Stimulus Change in Intensity Perceived diff via experiment

Slide 48

Slide 48 text

ΔP = k * ΔI I _ bright room, high intensity

Slide 49

Slide 49 text

ΔP = k * ΔI I __ super bright light needed

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

Our hypothesis…

Slide 52

Slide 52 text

;ďͿƐĐĂƩĞƌƉůŽƚ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ;ĐͿƐĐĂƩĞƌƉůŽƚƌĞŐƌĞƐƐŝŽŶ rA 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ 0.0 0.00 0.06 0.12 0.18 0.24 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND If the perception of correlation in scatterplots follows Weber’s law… better worse

Slide 53

Slide 53 text

;ďͿƐĐĂƩĞƌƉůŽƚ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ;ĐͿƐĐĂƩĞƌƉůŽƚƌĞŐƌĞƐƐŝŽŶ rA 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ 0.0 0.00 0.06 0.12 0.18 0.24 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND What does the perception of correlation in other charts look like? better worse

Slide 54

Slide 54 text

;ďͿƐĐĂƩĞƌƉůŽƚ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ;ĐͿƐĐĂƩĞƌƉůŽƚƌĞŐƌĞƐƐŝŽŶ rA 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ 0.0 0.00 0.06 0.12 0.18 0.24 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND vs What does the perception of correlation in other charts look like? better worse

Slide 55

Slide 55 text

;ďͿƐĐĂƩĞƌƉůŽƚ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ;ĐͿƐĐĂƩĞƌƉůŽƚƌĞŐƌĞƐƐŝŽŶ rA 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ 0.0 0.00 0.06 0.12 0.18 0.24 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND What if the perception of correlation in other charts also follows Weber’s law? better worse

Slide 56

Slide 56 text

;ďͿƐĐĂƩĞƌƉůŽƚ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ;ĐͿƐĐĂƩĞƌƉůŽƚƌĞŐƌĞƐƐŝŽŶ rA 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ 0.0 0.00 0.06 0.12 0.18 0.24 0.00 0.06 0.12 0.18 0.24 ;ĂͿƐĐĂƩĞƌƉůŽƚ͕ZĞŶƐŝŶŬ r 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.06 0.12 0.18 0.24 ƽ ƽ ƽ ƽ ƽ ƽ ƽ භ from above from below JND What if the perception of correlation in other charts also follows Weber’s law? vs better worse

Slide 57

Slide 57 text

Experiment

Slide 58

Slide 58 text

Stimuli: 
 9 chart types depicting 
 bi-variate data

Slide 59

Slide 59 text

r = -1 r = -0.8 r = -0.3 r = 0.3 r = 0.8 r = 1 scatterplot parallel coordinates (pcp) stackedarea

Slide 60

Slide 60 text

coordinates (pcp) stackedarea stackedline stackedbar r = -1 r = -0.8 r = -0.3 r = 0.3 r = 0.8 r = 1 scatterplot parallel coordinates (pcp) stackedarea

Slide 61

Slide 61 text

radar line ordered line r = -1 r = -0.8 r = -0.3 r = 0.3 r = 0.8 r = 1 scatterplot parallel coordinates (pcp) stackedarea

Slide 62

Slide 62 text

stackedbar donut radar line r = -1 r = -0.8 r = -0.3 r = 0.3 r = 0.8 r = 1 scatterplot parallel coordinates (pcp) stackedarea

Slide 63

Slide 63 text

Methodology: Crowdsourced* on Amazon’s Mechanical Turk

Slide 64

Slide 64 text

- n=1687 (AMT) - 9 charts - Normal data (in charts) - Between subjects - “Staircase” methodology - Kruskal-Wallis (overall) - Mann-Whitney 
 (post-hoc) - Bonferonni correction
 (p < 0.0036) Design Analyses

Slide 65

Slide 65 text

Results

Slide 66

Slide 66 text

scatterplot − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● scatterplot − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● parallel coordinates − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● parallel coordinates − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● stackedarea − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● stackedarea − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedline − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedline − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedbar − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedbar − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● donut − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● donut − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● line − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● line − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● radar − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● radar − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ordered line − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ordered line − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● 1. Inferred JNDs from experiment data for each chart and for 
 positive/negative correlations.

Slide 67

Slide 67 text

scatterplot − positive r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● scatterplot − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● parallel coordinates − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● parallel coordinates − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● stackedarea − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● stackedarea − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedline − positive r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedline − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedbar − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedbar − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● donut − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● donut − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● line − positive 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● line − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● radar − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● radar − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ordered line − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ordered line − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ●

Slide 68

Slide 68 text

scatterplot − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● scatterplot − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● parallel coordinates − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● parallel coordinates − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● stackedarea − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ● stackedarea − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedline − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedline − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedbar − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● stackedbar − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● donut − positive r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● donut − negative r jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● line − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● line − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● radar − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● radar − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ordered line − positive jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● ordered line − negative jnd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ● ● ● ● ● ● ● ● ● ● ● ● 2. Tested Weber-model fit using previously- established methodologies. 1. Inferred JNDs from experiment data for each chart and for 
 positive/negative correlations. model fit results 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ordered line line radar stackedline stackedarea stackedbar donut scatterplot parallel coordinates scatterplot, Rensink positive negative JND rA

Slide 69

Slide 69 text

model fit results 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ordered line line radar stackedline stackedarea stackedbar donut scatterplot parallel coordinates scatterplot, Rensink positive negative JND rA less precise more precise

Slide 70

Slide 70 text

! !!! !

Slide 71

Slide 71 text

The perception of correlation 
 in every tested chart can be modeled using Weber’s law.

Slide 72

Slide 72 text

You can do a lot of good with good models.

Slide 73

Slide 73 text

1. Perceptually-backed ranking of precision for judging correlation

Slide 74

Slide 74 text

model fit results 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ordered line line radar stackedline stackedarea stackedbar donut scatterplot parallel coordinates scatterplot, Rensink positive negative JND rA less precise more precise

Slide 75

Slide 75 text

model fit results 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ordered line line radar stackedline stackedarea stackedbar donut scatterplot parallel coordinates scatterplot, Rensink positive negative JND rA Obtain rankings at each |r|

Slide 76

Slide 76 text

Perceptually-backed ranking for vis of correlation

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

Interpolated (predicted) performance from models

Slide 80

Slide 80 text

Overall ranking

Slide 81

Slide 81 text

Perceptually-backed ranking for vis of correlation

Slide 82

Slide 82 text

2. Explore properties of the perceptual space of correlation.

Slide 83

Slide 83 text

r = -1 r = -0.8 r = -0.3 r = 0.3 r = 0.8 r = 1 scatterplot parallel coordinates (pcp) stackedarea

Slide 84

Slide 84 text

0.7 0.8 0.85 scatterplot (positive) scatterplot (negative) parallel coordinates (negative) parallel coordinates (positive) Symmetric Not Symmetric ✓ ✓ ✓ X 0.7 0.8 0.85 ✓ Differences reliably 
 perceived Differences
 (not) reliably 
 perceived X

Slide 85

Slide 85 text

0.7 0.8 0.85 scatterplot (positive) scatterplot (negative) parallel coordinates (negative) parallel coordinates (positive) Symmetric Asymmetric ✓ ✓ ✓ X 0.7 0.8 0.85 ✓ Differences reliably 
 perceived Differences
 (not) reliably 
 perceived X

Slide 86

Slide 86 text

sp and pcp 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 parallelCoordinates scatterplot positive negative -PCP as good as scatterplots +PCP terrible

Slide 87

Slide 87 text

To show correlations precisely in parallel coordinates plots, flip the axes to show as many negative correlations as possible. Design implication: scatterplot (positive) scatterplot (negative) parallel coordinates (negative) parallel coordinates (positive) scatterplot (positive) scatterplot (negative) parallel coordinates (negative)

Slide 88

Slide 88 text

3. Guide the novice user in depicting correlation.

Slide 89

Slide 89 text

stackedarea, stackedline and stackedbar 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 stackedline stackedarea stackedbar positive negative parallel coordinates (pcp) stackedarea stackedline stackedline stackedbar donut parallel coordinates (pcp) stackedarea stackedline stackedbar Worst Best OK

Slide 90

Slide 90 text

Future Work

Slide 91

Slide 91 text

Why does Weber’s law, which typically applies to low-level aspects of perception, work so well for modeling correlation?

Slide 92

Slide 92 text

conj: People aren’t perceiving correlation, but the visual features related to correlation.

Slide 93

Slide 93 text

r = 0.8 r = 0.5

Slide 94

Slide 94 text

r = 0.8 r = 0.5 - -

Slide 95

Slide 95 text

Theory-grounded models help build the science of visualization while providing actionable information to inform visualization design. To summarize:

Slide 96

Slide 96 text

Data, Code, Analysis Scripts, Paper:
 github.com/TuftsVALT/ranking-correlation Lane Harrison ([email protected])