Slide 1

Slide 1 text

The Trees, the Forest, and the Passion for Prints Networks of Dutch Print Production, 1500-1750 Matthew Lincoln University of Maryland @matthewdlincoln July 22, 2015 Keystone Digital Humanities Conference

Slide 2

Slide 2 text

Art objects in the British Museum, by type @matthewdlincoln

Slide 3

Slide 3 text

“Sculptura in Æs”, from Johannes Stradanus’ Nova Reperta. Published by Philips Galle, c. 1588-1605. British Museum, London. What evidence can thousands of prints give us?

Slide 4

Slide 4 text

Designer “Sculptura in Æs”, from Johannes Stradanus’ Nova Reperta. Published by Philips Galle, c. 1588-1605. British Museum, London.

Slide 5

Slide 5 text

Engraver Designer “Sculptura in Æs”, from Johannes Stradanus’ Nova Reperta. Published by Philips Galle, c. 1588-1605. British Museum, London.

Slide 6

Slide 6 text

Publisher Designer Engraver “Sculptura in Æs”, from Johannes Stradanus’ Nova Reperta. Published by Philips Galle, c. 1588-1605. British Museum, London.

Slide 7

Slide 7 text

@matthewdlincoln

Slide 8

Slide 8 text

@matthewdlincoln

Slide 9

Slide 9 text

Peter Paul Rubens Schelte à Bolswert Gillis Hendricx designed @matthewdlincoln

Slide 10

Slide 10 text

British Museum collections LOD: collection.britishmuseum.org Between 1500-1750: •  49,306 prints •  3,592 nodes: distinct designers, printmakers, and publishers •  76,697 edges: connections inferred from co-participation in an object Mining the museum for data @matthewdlincoln

Slide 11

Slide 11 text

@matthewdlincoln Requisite Gephi mess:

Slide 12

Slide 12 text

@matthewdlincoln 1.  Create a set of subgraphs based on a rolling 10-year window: •  e.g. the 1640 subgraph contains only edges and nodes extant between 1635 and 1645 •  Edges (prints) exist between the start and end dates ascribed to an object o  Edges are unweighted to avoid biasing edge strength based on the number of surviving impressions (complicated!) •  Nodes (artists) exist during their life dates (also complicated!) 2.  For each subgraph, calculate network metrics at the global, regional/national, and individual scale Dynamic network analysis

Slide 13

Slide 13 text

@matthewdlincoln 1. Did the northern Netherlands adopt and continue the highly-centralized Antwerp print production model through the seventeenth century? OR… 2. Did rising Dutch prosperity instead support a more distributed network of local print markets? My question: centralized production

Slide 14

Slide 14 text

é More centralized ê More distributed @matthewdlincoln Graph centrality score

Slide 15

Slide 15 text

@matthewdlincoln é More centralized ê More distributed 0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score é More centralized ê More distributed @matthewdlincoln

Slide 16

Slide 16 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln •  Rapid centralization around 1580-1600 •  Swift re-distribution within a generation, reverting to a low level by 1640s •  Economic contraction in 1670s did not lead to an immediate return of centralization

Slide 17

Slide 17 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln Lucas van Leyden

Slide 18

Slide 18 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln Hendrick Goltzius

Slide 19

Slide 19 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln Claes Jansz. Visscher

Slide 20

Slide 20 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln Nicolaes de Bruyn

Slide 21

Slide 21 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln Abraham Blooteling

Slide 22

Slide 22 text

0.00 0.05 0.10 0.15 0.20 1500 1550 1600 1650 1700 1750 year graph centrality score @matthewdlincoln Bernard Picart

Slide 23

Slide 23 text

centrality nodes edges 0.00 0.05 0.10 0.15 0.20 0 100 200 300 400 0 200 400 600 1500 1550 1600 1650 1700 1750 year value @matthewdlincoln

Slide 24

Slide 24 text

centrality nodes edges 0.00 0.05 0.10 0.15 0.20 0 100 200 300 400 0 200 400 600 1500 1550 1600 1650 1700 1750 year value @matthewdlincoln It’s not just the number of artists. It’s how they connect.

Slide 25

Slide 25 text

@matthewdlincoln BUT WAIT We want to avoid “just-so” stories! How do we know if this theoretical explanation makes sense?

Slide 26

Slide 26 text

Simulation time @matthewdlincoln IF our simulated network metrics appear similar to the observed network metrics from our dataset, THEN we can feel more confident about our proposed explanation. Let’s create a simulation w/ actor behavior we are proposing.

Slide 27

Slide 27 text

Erdos-Renyi: edges added totally at random Random graph generation Scale-Free: edges follow a power-law distribution @matthewdlincoln

Slide 28

Slide 28 text

0.00 0.05 0.10 0.15 0.20 0.25 1500 1550 1600 1650 1700 1750 year graph centralization score model erdos−renyi scale−free3 @matthewdlincoln

Slide 29

Slide 29 text

0.00 0.05 0.10 0.15 0.20 0.25 1500 1550 1600 1650 1700 1750 year graph centralization score model erdos−renyi scale−free3 @matthewdlincoln Printmakers needed expert collaborators

Slide 30

Slide 30 text

0.00 0.05 0.10 0.15 0.20 0.25 1500 1550 1600 1650 1700 1750 year graph centralization score model erdos−renyi scale−free3 @matthewdlincoln Networks deserve metrics, not just viz. They also need simulation, not just speculation

Slide 31

Slide 31 text

Matthew Lincoln matthewlincoln.net @matthewdlincoln