Slide 1

Slide 1 text

関西大学総合情報学部 浅野 晃 統計学 2024年度秋学期 第5回 分布をまとめる ― 記述統計量(平均・分散など)

Slide 2

Slide 2 text

代表値🤔🤔

Slide 3

Slide 3 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 代表値とは 3 統計学が相手にするのは,「分布」しているデータ 「大般若会」で経典を翻すだけで「読む」ように, データも一目見るだけで内容がわかればいいけれど… ※大般若会(だいはんにゃえ)とは,600巻に及ぶ「大般若経」を, 僧侶が翻すことで「読む」という儀式です。 (講義ウェブサイトにあるリンク先を参照してください)

Slide 4

Slide 4 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 代表値とは 4 現実には,人間は,数字をざっと眺める だけで一瞬で理解できるほど,賢くありません •ひとつの数にまとめる •図示する(ヒストグラム) そこで

Slide 5

Slide 5 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 代表値とは 4 現実には,人間は,数字をざっと眺める だけで一瞬で理解できるほど,賢くありません •ひとつの数にまとめる •図示する(ヒストグラム) そこで

Slide 6

Slide 6 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 代表値とは 4 現実には,人間は,数字をざっと眺める だけで一瞬で理解できるほど,賢くありません •ひとつの数にまとめる [代表値] 数字で表されていれば,計算ができる •図示する(ヒストグラム) そこで

Slide 7

Slide 7 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 平均 5 とくに[算術平均]は代表的な代表値 算術平均 = (データの総和) ÷ (数値の個数)

Slide 8

Slide 8 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 平均 5 とくに[算術平均]は代表的な代表値 算術平均 = (データの総和) ÷ (数値の個数) ↑ ” / ”でも同じ意味 (÷よりもよく用います)

Slide 9

Slide 9 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 算術? 6 算術平均以外にも,「幾何平均」「調和平均」というものもあります 算術平均 = (データの総和)÷(数値の個数) 幾何平均 = (データ全部の積)の,(数値の個数)乗根 1 1 √2 面積2 面積1 面積1 √(ルート,2乗根)が出てくるのは幾何の問題です

Slide 10

Slide 10 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 算術? 6 算術平均以外にも,「幾何平均」「調和平均」というものもあります この講義では,以後「平均」といえば算術平均のことです。 算術平均 = (データの総和)÷(数値の個数) 幾何平均 = (データ全部の積)の,(数値の個数)乗根 1 1 √2 面積2 面積1 面積1 √(ルート,2乗根)が出てくるのは幾何の問題です

Slide 11

Slide 11 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 算術平均を式で書くと 7 データ x1, x2, . . . , xn , 数値の個数(データサイズ)n のとき, 平均 ¯ x = x1 + x2 + · · · + xn n = 1 n n i=1 xi ※Σは「合計」を表す記号です。

Slide 12

Slide 12 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 算術平均を式で書くと 7 データ x1, x2, . . . , xn , 数値の個数(データサイズ)n のとき, 平均 ¯ x = x1 + x2 + · · · + xn n = 1 n n i=1 xi ※「エックスバー」と読んでください。「バー」は平均を表すのによく用います。 ※Σは「合計」を表す記号です。

Slide 13

Slide 13 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 算術平均を式で書くと 7 データ x1, x2, . . . , xn , 数値の個数(データサイズ)n のとき, 平均 ¯ x = x1 + x2 + · · · + xn n = 1 n n i=1 xi 和 ※「エックスバー」と読んでください。「バー」は平均を表すのによく用います。 ※Σは「合計」を表す記号です。 ※もし日本人がΣ記号を発明していたら,きっと「和」と書いていたことでしょう。

Slide 14

Slide 14 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 データサイズ? 8 「データ」という言葉は,数値の集まりをさす (1つ1つの数値をさすのではない) データの中に含まれる数値の個数をデータの大きさ(サイズ)という ※データの数とはいいません。

Slide 15

Slide 15 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 データサイズ? 8 「データ」という言葉は,数値の集まりをさす (1つ1つの数値をさすのではない) データの中に含まれる数値の個数をデータの大きさ(サイズ)という 家族(family)という言葉に似ている ※データの数とはいいません。

Slide 16

Slide 16 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 データサイズ? 8 「データ」という言葉は,数値の集まりをさす (1つ1つの数値をさすのではない) データの中に含まれる数値の個数をデータの大きさ(サイズ)という 家族(family)という言葉に似ている ※データの数とはいいません。 ※人数の多い家族は「大家族」といい,「多家族」とはいいません。

Slide 17

Slide 17 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 9 度数分布とは,こんなやつでした                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 18

Slide 18 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 10 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 19

Slide 19 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 10 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 20

Slide 20 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 10 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) ひとつの階級に入っている数値は, みな「階級値と同じ」とみなすから,

Slide 21

Slide 21 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 10 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) ひとつの階級に入っている数値は, みな「階級値と同じ」とみなすから, ひとつの階級には,「階級値」と同じ数値が, 度数(個)あるとみなされる

Slide 22

Slide 22 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 10 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) ひとつの階級に入っている数値は, みな「階級値と同じ」とみなすから, ひとつの階級には,「階級値」と同じ数値が, 度数(個)あるとみなされる よって,ひとつの階級の数値の合計は, 「階級値×度数」で表される

Slide 23

Slide 23 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 10 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)   =((階級値×度数)の合計)/(データサイズ) ひとつの階級に入っている数値は, みな「階級値と同じ」とみなすから, ひとつの階級には,「階級値」と同じ数値が, 度数(個)あるとみなされる よって,ひとつの階級の数値の合計は, 「階級値×度数」で表される

Slide 24

Slide 24 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 11 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)   = ((階級値×度数)の合計) / (データサイズ)

Slide 25

Slide 25 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 11 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)   = ((階級値×度数)の合計) / (データサイズ) かけ算(×)と割り算( / )について, カッコ”( )”の位置をかえる

Slide 26

Slide 26 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 11 平均 = (データの合計) / (データサイズ)                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)   = [階級値 × (度数 / データサイズ)]の合計   = ((階級値×度数)の合計) / (データサイズ) かけ算(×)と割り算( / )について, カッコ”( )”の位置をかえる

Slide 27

Slide 27 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 12                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) 平均 = (データの合計) / (データサイズ)   = [階級値 × (度数 / データサイズ)]の合計

Slide 28

Slide 28 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 12                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) 平均 = (データの合計) / (データサイズ)   = [階級値 × (度数 / データサイズ)]の合計

Slide 29

Slide 29 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 12 (度数 / データサイズ)のことを 「相対度数」という                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) 平均 = (データの合計) / (データサイズ)   = [階級値 × (度数 / データサイズ)]の合計

Slide 30

Slide 30 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 12   =[階級値×相対度数]の合計 (度数 / データサイズ)のことを 「相対度数」という                                                     以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%) 平均 = (データの合計) / (データサイズ)   = [階級値 × (度数 / データサイズ)]の合計

Slide 31

Slide 31 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 13 テキストに載っている別の例で, 計算してみましょう 階級 階級値 相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0

Slide 32

Slide 32 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 14 各階級で, [階級値×相対度数]を求めて 合計する 階級 階級値 相対度数 階級値×相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0  

Slide 33

Slide 33 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 14 各階級で, [階級値×相対度数]を求めて 合計する 5×0.04 = 0.2 階級 階級値 相対度数 階級値×相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0  

Slide 34

Slide 34 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 14 各階級で, [階級値×相対度数]を求めて 合計する 5×0.04 = 0.2 階級 階級値 相対度数 階級値×相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0   15×0.16 = 2.4

Slide 35

Slide 35 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 14 各階級で, [階級値×相対度数]を求めて 合計する 5×0.04 = 0.2 階級 階級値 相対度数 階級値×相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0   15×0.16 = 2.4 25×0.08 = 2.0 35×0.12 = 4.2 45×0.10 = 4.5 55×0.10 = 5.5 65×0.12 = 7.8 75×0.08 = 6.0 85×0.18 = 15.3 95×0.02 = 1.9

Slide 36

Slide 36 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 14 各階級で, [階級値×相対度数]を求めて 合計する 5×0.04 = 0.2 階級 階級値 相対度数 階級値×相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0   15×0.16 = 2.4 25×0.08 = 2.0 35×0.12 = 4.2 45×0.10 = 4.5 55×0.10 = 5.5 65×0.12 = 7.8 75×0.08 = 6.0 85×0.18 = 15.3 95×0.02 = 1.9 合計 49.8

Slide 37

Slide 37 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から平均を求める 14 各階級で, [階級値×相対度数]を求めて 合計する 5×0.04 = 0.2 階級 階級値 相対度数 階級値×相対度数 0 ~ 9(点) 5 0.04 10 ~ 19 15 0.16 20 ~ 29 25 0.08 30 ~ 39 35 0.12 40 ~ 49 45 0.10 50 ~ 59 55 0.10 60 ~ 69 65 0.12 70 ~ 79 75 0.08 80 ~ 89 85 0.18 90 ~ 100 95 0.02 合計 1.0   15×0.16 = 2.4 25×0.08 = 2.0 35×0.12 = 4.2 45×0.10 = 4.5 55×0.10 = 5.5 65×0.12 = 7.8 75×0.08 = 6.0 85×0.18 = 15.3 95×0.02 = 1.9 合計 49.8 これが平均

Slide 38

Slide 38 text

分散と標準偏差🤔🤔

Slide 39

Slide 39 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「ばらつき」を数字で 16 分布は,大小ばらばらな数値からなるデータ では,どのくらいばらばらかを,数字で表そう A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7 A, B, Cは,いずれも10個の数値からなるデータです。

Slide 40

Slide 40 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「ばらつき」を数字で 16 分布は,大小ばらばらな数値からなるデータ では,どのくらいばらばらかを,数字で表そう A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7 平均はどれも5 A, B, Cは,いずれも10個の数値からなるデータです。

Slide 41

Slide 41 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「ばらつき」を数字で 16 分布は,大小ばらばらな数値からなるデータ では,どのくらいばらばらかを,数字で表そう A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7 では,どう違う? 平均はどれも5 A, B, Cは,いずれも10個の数値からなるデータです。

Slide 42

Slide 42 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7    

Slide 43

Slide 43 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 Cは,最大と最小の差[レンジ]が違う A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7    

Slide 44

Slide 44 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 Cは,最大と最小の差[レンジ]が違う A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7     A, Bはレンジは同じだが,

Slide 45

Slide 45 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 Cは,最大と最小の差[レンジ]が違う A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7     A, Bはレンジは同じだが,

Slide 46

Slide 46 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 Cは,最大と最小の差[レンジ]が違う A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7     A, Bはレンジは同じだが,

Slide 47

Slide 47 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 Cは,最大と最小の差[レンジ]が違う A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7     A, Bはレンジは同じだが, Aの青線部とBの赤線部を比べると

Slide 48

Slide 48 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 レンジとばらつき 17 Cは,最大と最小の差[レンジ]が違う A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 C: 3, 4, 4, 5, 5, 5, 5, 6, 6, 7     A, Bはレンジは同じだが, Bのほうがばらついているように見える Aの青線部とBの赤線部を比べると

Slide 49

Slide 49 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10

Slide 50

Slide 50 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 51

Slide 51 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 52

Slide 52 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 0 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 53

Slide 53 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 0 0 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 54

Slide 54 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 0 0 0 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 55

Slide 55 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 0 0 0 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 56

Slide 56 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 0 0 0 -2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 57

Slide 57 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 0 0 0 -2 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 58

Slide 58 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 -2 0 0 0 -2 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 59

Slide 59 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 0 0 0 -2 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 60

Slide 60 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 -2 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 61

Slide 61 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 62

Slide 62 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 0 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 63

Slide 63 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 0 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 64

Slide 64 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 0 -2 +2 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 65

Slide 65 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 0 -2 +2 +3 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 66

Slide 66 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 0 -3 -2 +2 +3 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 67

Slide 67 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 0 0 0 -2 +2 0 -3 -2 +2 +3 +4 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 68

Slide 68 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 69

Slide 69 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 70

Slide 70 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 71

Slide 71 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差 18 偏差を平均したら,AとBのばらつきの違いが表せるでしょうか? 各数値と平均との差を[偏差]という A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4 ※AもBも平均は5ですから,各数値と5との差を書いていきます。

Slide 72

Slide 72 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏差の平均? 19 だめです🙅🙅 偏差を平均したらゼロになるからです。 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 73

Slide 73 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 そこで,偏差を2乗する 20 偏差を2乗したら全部正の数になるから,2乗してから平均する A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 74

Slide 74 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 そこで,偏差を2乗する 20 偏差を2乗したら全部正の数になるから,2乗してから平均する 25 4 4 0 0 0 0 4 4 25 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 75

Slide 75 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 そこで,偏差を2乗する 20 偏差を2乗したら全部正の数になるから,2乗してから平均する 25 4 4 0 0 0 0 4 4 25 25 16 9 4 0 0 4 9 16 25 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 76

Slide 76 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散 21 [分散]=(偏差)2の平均 この「分散」を,ばらつきの指標とする 25 4 4 0 0 0 0 4 4 25 25 16 9 4 0 0 4 9 16 25 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 77

Slide 77 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散 21 平均 6.6 = Aの分散 [分散]=(偏差)2の平均 この「分散」を,ばらつきの指標とする 25 4 4 0 0 0 0 4 4 25 25 16 9 4 0 0 4 9 16 25 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 78

Slide 78 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散 21 平均 6.6 = Aの分散 平均 10.8 = Bの分散 [分散]=(偏差)2の平均 この「分散」を,ばらつきの指標とする 25 4 4 0 0 0 0 4 4 25 25 16 9 4 0 0 4 9 16 25 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 79

Slide 79 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散 21 平均 6.6 = Aの分散 平均 10.8 = Bの分散 [分散]=(偏差)2の平均 この「分散」を,ばらつきの指標とする Bのほうが分散が大きい。Bのほうがよりばらついている。 25 4 4 0 0 0 0 4 4 25 25 16 9 4 0 0 4 9 16 25 A: 0, 3, 3, 5, 5, 5, 5, 7, 7, 10 B: 0, 1, 2, 3, 5, 5, 7, 8, 9, 10 0 +2 +5 -2 -5 0 +5 -5 -4 0 0 0 -2 +2 0 -3 -2 +2 +3 +4

Slide 80

Slide 80 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2

Slide 81

Slide 81 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2

Slide 82

Slide 82 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2 1番の数値

Slide 83

Slide 83 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2 1番の数値

Slide 84

Slide 84 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2 1番の数値 データの平均

Slide 85

Slide 85 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2 1番の数値 データの平均 n 個たして n で割る

Slide 86

Slide 86 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分散と標準偏差 22 [分散]=(偏差)2の平均 式で書くと σ2 = 1 n (x1 − ¯ x)2 + (x2 − ¯ x)2 + · · · + (xn − ¯ x)2 = 1 n n i=1 (xi − ¯ x)2 1番の数値 データの平均 n 個たして n で割る 分散の平方根(√)を[標準偏差]という 分散を求める計算の途中で数値を2乗しているので,平方根を求めてもとにもどす

Slide 87

Slide 87 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散=(偏差)2の平均 一方,                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 88

Slide 88 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散=(偏差)2の平均 一方,                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 89

Slide 89 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散=(偏差)2の平均 一方,                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 90

Slide 90 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散=(偏差)2の平均 一方, だから,                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 91

Slide 91 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散=(偏差)2の平均 一方, だから, 分散 = [(偏差)2×相対度数]の合計                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 92

Slide 92 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散=(偏差)2の平均 一方, だから, 分散 = [(偏差)2×相対度数]の合計 ※ここを置き換える                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 93

Slide 93 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 23 データの平均=[階級値×相対度数]の合計 分散 = [(階級値−データの平均)2×相対度数]の合計 分散=(偏差)2の平均 一方, だから, 分散 = [(偏差)2×相対度数]の合計 ※ここを置き換える                                                         以上 未満 階級値 度数 相対度数 15 25 20 4 0.08 (8%) 25 35 30 3 0.06 (6%) 35 45 40 3 0.06 (6%) 45 55 50 8 0.16 (16%) 55 65 60 12 0.24 (24%) 65 75 70 8 0.16 (16%) 75 85 80 9 0.18 (18%) 85 95 90 3 0.06 (6%) x x x 計 計 50 1 (100%)

Slide 94

Slide 94 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 24 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数    偏差       (偏差)2    (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 0.2 10 ~ 19 15 0.16 2.4 20 ~ 29 25 0.08 2.0 30 ~ 39 35 0.12 4.2 40 ~ 49 45 0.10 4.5 50 ~ 59 55 0.10 5.5 60 ~ 69 65 0.12 7.8 70 ~ 79 75 0.08 6.0 80 ~ 89 85 0.18 15.3 90 ~ 100 95 0.02 1.9 合計 1.0 49.8 (=平均 )

Slide 95

Slide 95 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 24 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数    偏差       (偏差)2    (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 0.2 10 ~ 19 15 0.16 2.4 20 ~ 29 25 0.08 2.0 30 ~ 39 35 0.12 4.2 40 ~ 49 45 0.10 4.5 50 ~ 59 55 0.10 5.5 60 ~ 69 65 0.12 7.8 70 ~ 79 75 0.08 6.0 80 ~ 89 85 0.18 15.3 90 ~ 100 95 0.02 1.9 合計 1.0 49.8 (=平均 ) 5 - 49.8 = -44.8

Slide 96

Slide 96 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 24 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数    偏差       (偏差)2    (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 0.2 10 ~ 19 15 0.16 2.4 20 ~ 29 25 0.08 2.0 30 ~ 39 35 0.12 4.2 40 ~ 49 45 0.10 4.5 50 ~ 59 55 0.10 5.5 60 ~ 69 65 0.12 7.8 70 ~ 79 75 0.08 6.0 80 ~ 89 85 0.18 15.3 90 ~ 100 95 0.02 1.9 合計 1.0 49.8 (=平均 ) 5 - 49.8 = -44.8 (-44.8)2=2007.4

Slide 97

Slide 97 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 24 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数    偏差       (偏差)2    (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 0.2 10 ~ 19 15 0.16 2.4 20 ~ 29 25 0.08 2.0 30 ~ 39 35 0.12 4.2 40 ~ 49 45 0.10 4.5 50 ~ 59 55 0.10 5.5 60 ~ 69 65 0.12 7.8 70 ~ 79 75 0.08 6.0 80 ~ 89 85 0.18 15.3 90 ~ 100 95 0.02 1.9 合計 1.0 49.8 (=平均 ) 5 - 49.8 = -44.8 (-44.8)2=2007.4 2007.4×0.04 =80.28

Slide 98

Slide 98 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 25 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数 偏差 (偏差)2 (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 5 × 0.04 5 − 49.8 (−44.8)2 2007.04 × 0.04 = 0.2 = −44.8 = 2007.04 = 80.28 10 ~ 19 15 0.16 2.4 −34.8 1211.04 193.77 20 ~ 29 25 0.08 2.0 −24.8 615.04 49.20 30 ~ 39 35 0.12 4.2 −14.8 219.04 26.28 40 ~ 49 45 0.10 4.5 −4.8 23.04 2.304 50 ~ 59 55 0.10 5.5 5.2 27.04 2.704 60 ~ 69 65 0.12 7.8 15.2 231.04 27.72 70 ~ 79 75 0.08 6.0 25.2 635.04 50.80 80 ~ 89 85 0.18 15.3 35.2 1239.04 223.03 90 ~ 100 95 0.02 1.9 45.2 2043.04 40.86 合計 1.0 49.8 696.96(=分散) (=平均 ) √ 696.96 = 26.4 (=標準偏差)

Slide 99

Slide 99 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 25 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数 偏差 (偏差)2 (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 5 × 0.04 5 − 49.8 (−44.8)2 2007.04 × 0.04 = 0.2 = −44.8 = 2007.04 = 80.28 10 ~ 19 15 0.16 2.4 −34.8 1211.04 193.77 20 ~ 29 25 0.08 2.0 −24.8 615.04 49.20 30 ~ 39 35 0.12 4.2 −14.8 219.04 26.28 40 ~ 49 45 0.10 4.5 −4.8 23.04 2.304 50 ~ 59 55 0.10 5.5 5.2 27.04 2.704 60 ~ 69 65 0.12 7.8 15.2 231.04 27.72 70 ~ 79 75 0.08 6.0 25.2 635.04 50.80 80 ~ 89 85 0.18 15.3 35.2 1239.04 223.03 90 ~ 100 95 0.02 1.9 45.2 2043.04 40.86 合計 1.0 49.8 696.96(=分散) (=平均 ) √ 696.96 = 26.4 (=標準偏差) 分散

Slide 100

Slide 100 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布から分散を求める 25 テキストに載っている例で,計算してみましょう 階級 階級値 相対度数 階級値×相対度数 偏差 (偏差)2 (偏差)2 × 相対度数 0 ~ 9(点) 5 0.04 5 × 0.04 5 − 49.8 (−44.8)2 2007.04 × 0.04 = 0.2 = −44.8 = 2007.04 = 80.28 10 ~ 19 15 0.16 2.4 −34.8 1211.04 193.77 20 ~ 29 25 0.08 2.0 −24.8 615.04 49.20 30 ~ 39 35 0.12 4.2 −14.8 219.04 26.28 40 ~ 49 45 0.10 4.5 −4.8 23.04 2.304 50 ~ 59 55 0.10 5.5 5.2 27.04 2.704 60 ~ 69 65 0.12 7.8 15.2 231.04 27.72 70 ~ 79 75 0.08 6.0 25.2 635.04 50.80 80 ~ 89 85 0.18 15.3 35.2 1239.04 223.03 90 ~ 100 95 0.02 1.9 45.2 2043.04 40.86 合計 1.0 49.8 696.96(=分散) (=平均 ) √ 696.96 = 26.4 (=標準偏差) 分散 分散の平方根が 標準偏差

Slide 101

Slide 101 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで,どうして2乗するの? 26 偏差の2乗ではなく,偏差の「絶対値」ではいけないの? 絶対値の関数は,途中に折れ目があってむずかしい 2乗を表す関数のグラフ(放物線)には折り目はない 偏差の「マイナス」を「プラス」にしたいのなら, x y y = |x|

Slide 102

Slide 102 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで,どうして2乗するの? 26 偏差の2乗ではなく,偏差の「絶対値」ではいけないの? 絶対値の関数は,途中に折れ目があってむずかしい 2乗を表す関数のグラフ(放物線)には折り目はない 偏差の「マイナス」を「プラス」にしたいのなら, x y y = |x| だから2乗を用います。

Slide 103

Slide 103 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」

Slide 104

Slide 104 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西

Slide 105

Slide 105 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨

Slide 106

Slide 106 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き)

Slide 107

Slide 107 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後)

Slide 108

Slide 108 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後)

Slide 109

Slide 109 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる)

Slide 110

Slide 110 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる) 東 西

Slide 111

Slide 111 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる) 東 西 🚅🚅💨💨

Slide 112

Slide 112 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる) 東 西 🚅🚅💨💨 –50km/h(西向き)

Slide 113

Slide 113 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる) 東 西 🚅🚅💨💨 –50km/h(西向き) –1時間(前)

Slide 114

Slide 114 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる) 東 西 🚅🚅💨💨 –50km/h(西向き) –1時間(前)

Slide 115

Slide 115 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 なぜマイナスかけるマイナス=プラス? 27 プラスとマイナスは,「向きが反対」と考えましょう。 東に1kmが「+1km」なら 🚅🚅💨💨 🚅🚅💨💨西に1kmは「–1km」 1時間後が「+1時間」なら 1時間前は「–1時間」 東 西 🚅🚅💨💨 +50km/h(東向き) +1時間(後) +50km/h × +1時間 = +50km(東にいる) 東 西 🚅🚅💨💨 –50km/h(西向き) –1時間(前) –50km/h × –1時間 = +50km(東にいた)

Slide 116

Slide 116 text

標準得点🤔🤔

Slide 117

Slide 117 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 29 試験で70点をとった。まわりより優れているのか? 一緒に受けた人たちの平均点が 50点なら 優れている 80点なら 劣っている

Slide 118

Slide 118 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 30 試験で70点をとった。まわりよりとても優れているのか? 一緒に受けた人たちの平均点が 50点なら まあ優れている 30点なら とても優れている …?

Slide 119

Slide 119 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 30 試験で70点をとった。まわりよりとても優れているのか? 一緒に受けた人たちの平均点が 50点なら まあ優れている 30点なら とても優れている …?

Slide 120

Slide 120 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 30 試験で70点をとった。まわりよりとても優れているのか? 一緒に受けた人たちの平均点が 50点なら まあ優れている 30点なら とても優れている …? 分散(標準偏差)も考えないと,答えられない

Slide 121

Slide 121 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 31 一緒に試験を受けた人たちが 平均60点で標準偏差5点なら 0 平均0 平均30点で標準偏差20点 30 70 70 60

Slide 122

Slide 122 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 31 一緒に試験を受けた人たちが 平均60点で標準偏差5点なら 0 平均0 平均30点で標準偏差20点 30 70 70 60 ※平均は高いがばらつきが小さい

Slide 123

Slide 123 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 31 一緒に試験を受けた人たちが 平均60点で標準偏差5点なら 0 平均0 平均30点で標準偏差20点 30 70 70 60 70点の人は,平均を 標準偏差の2倍上回っている ※平均は高いがばらつきが小さい

Slide 124

Slide 124 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 31 一緒に試験を受けた人たちが 平均60点で標準偏差5点なら 0 平均0 平均30点で標準偏差20点 30 70 70 60 70点の人は,平均を 標準偏差の2倍上回っている ※平均は高いがばらつきが小さい ※平均は低いがばらつきが大きい

Slide 125

Slide 125 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 31 一緒に試験を受けた人たちが 平均60点で標準偏差5点なら 0 平均0 平均30点で標準偏差20点 30 70 70 60 70点の人は,平均を 標準偏差の2倍上回っている 70点の人は,やはり平均を 標準偏差の2倍上回っている ※平均は高いがばらつきが小さい ※平均は低いがばらつきが大きい

Slide 126

Slide 126 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「試験で70点」は優れているのか 31 70点の「地位」, つまり受験者の中で どのくらい優れている かは,どちらも同じ 一緒に試験を受けた人たちが 平均60点で標準偏差5点なら 0 平均0 平均30点で標準偏差20点 30 70 70 60 70点の人は,平均を 標準偏差の2倍上回っている 70点の人は,やはり平均を 標準偏差の2倍上回っている ※平均は高いがばらつきが小さい ※平均は低いがばらつきが大きい

Slide 127

Slide 127 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標準得点 32 平均を標準偏差の2倍上回っている 0 平均を標準偏差の2倍下回っているなら 70 60 これを,[標準得点]が+2点 であるという 標準得点が –2点 ※標準得点は,Zスコア,Z値ともよばれます。

Slide 128

Slide 128 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標準得点への換算 33 標準得点 = 分布中のある数値が,平均を標準偏差の何倍          上回って/下回っているか 分布そのものを, 平均0,標準偏差1に「変換」したら? その数値の変換後の値が,そのまま標準得点になる ある人の点数を変換して「+2」になったら, +2は標準偏差(=1)の2倍だから「標準得点2点」

Slide 129

Slide 129 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換 34 分布中の各数値から,平均を引く 平均μ 標準偏差σ 平均μ 0 X

Slide 130

Slide 130 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換 34 分布中の各数値から,平均を引く 平均μ 標準偏差σ 平均μ 0 X 各数値からμを引く

Slide 131

Slide 131 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換 34 分布中の各数値から,平均を引く 平均μ 標準偏差σ 平均μ 0 X 平均0 X – μ 各数値からμを引く

Slide 132

Slide 132 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換 34 分布中の各数値から,平均を引く 平均μ 標準偏差σ 平均0 標準偏差σ 平均μ 0 X 平均0 X – μ 各数値からμを引く

Slide 133

Slide 133 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 平均0 X – μ

Slide 134

Slide 134 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は 平均0 X – μ

Slide 135

Slide 135 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は (1/σ)倍 平均0 X – μ

Slide 136

Slide 136 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は (1/σ)倍 分散は(偏差)2の平均 平均0 X – μ

Slide 137

Slide 137 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は (1/σ)倍 分散は(偏差)2の平均 (1/σ)2倍 平均0 X – μ

Slide 138

Slide 138 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は (1/σ)倍 分散は(偏差)2の平均 (1/σ)2倍 標準偏差は分散の平方根 平均0 X – μ

Slide 139

Slide 139 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は (1/σ)倍 分散は(偏差)2の平均 (1/σ)2倍 標準偏差は分散の平方根 (1/σ)倍 平均0 X – μ

Slide 140

Slide 140 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 分布の変換(続き) 35 分布中の各数値から,平均を引いて標準偏差で割る 平均0 標準偏差σ 各数値を (1/σ)倍 各数値の偏差は (1/σ)倍 分散は(偏差)2の平均 (1/σ)2倍 標準偏差は分散の平方根 (1/σ)倍 平均0 標準偏差1 平均0 X – μ X – μ σ 0

Slide 141

Slide 141 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 式で書くと 36 分布そのものをXとすると, Z = (X – μ) / σ と変換すると,Zは平均0,標準偏差1 ※分布そのものを, 数のようにひとつの文字で表す

Slide 142

Slide 142 text

26 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 受験産業でいう「偏差値」 37 平均0,標準偏差1の分布Zを,さらに W = 10Z + 50 と変換すると,Wは平均50,標準偏差10 これが[偏差値] 偏差値70 平均よりも,標準偏差の2倍上回っている 偏差値40 平均よりも,標準偏差の1倍下回っている ※わかりやすい数値で書いています。   「華氏温度」を思い出してください。