χϡʔϥϧωοτϫʔΫ
ͷϒϨΠΫεϧʔ
ß
Hinton et al., A Fast Learning Algorithm for
Deep Belief Nets, Neural Computing, 2006.
ß
χϡʔϥϧωοτϫʔΫ1950͔Β
͕͋ͬͨɺදݱೳྗ͕ߴ͗ͯ͢ʢσʔλ
ྔʹରͯ͠ʣաֶशʹͳΓ͔ͬͨ͢ɻ
→͝ͱʹֶशΛߦ͍ɺෳΛॏͶΔ
͜ͱͰաֶशͷ͕ղܾͰ͖ͨʂ
7
Slide 8
Slide 8 text
࠶ؼతχϡʔϥϧωοτϫʔΫ
Λ༻͍ͨը૾ೝࣝͱߏจղੳ
8
• Parsing Natural Scenes
and Natural Language
with Recursive Neural
Networks, Socher et al.,
ICML 2011.
• ྡ͢Δը૾ྖҬɾ୯
ޠ͔Β࠶ؼతʹߏΛ
ೝࣝ͢Δ
→Staford Parser ʹ౷
߹ (ACL 2013)
Slide 9
Slide 9 text
࠶ؼతχϡʔϥϧωοτϫʔΫͰ
ϑϨʔζͷײۃੑྨ࣮ݱ
9
• Recursive Deep Models for
Semantic Compositionality Over a
Sentiment Treebank, Socher et
al., EMNLP 2013.
Slide 10
Slide 10 text
Socher et al. (NIPS 2011): ୯ޠϕΫ
τϧ͔ΒจͷҙຯΛ࠶ؼతʹܭࢉ
10
Slide 11
Slide 11 text
ϦΧϨϯτχϡʔϥϧωοτ
ϫʔΫͰແݶͷจ຺ΛߟྀՄೳ
11
• Recurrent Neural Network based Language Model,
Mikolov et al., InterSpeech 2010.
→աڈͷཤྺΛߟྀͯ͠ݱࡏͷ୯ޠΛ༧ଌ͢ΔϞσϧ
Slide 12
Slide 12 text
ػց༁ܥྻ͔ΒܥྻΛੜ͢
ΔϞσϧͱͯ͠ਂֶशͰѻ͑Δ
ß
Sequence to Sequence Learning with Neural
Networks, Sutskever et al., NIPS 2014.
→LSTM (Long-Short Term Memory) Λ2ͭ༻
͍ɺೖྗܥྻΛݻఆͷϕΫτϧʹม
͠ɺͦͷϕΫτϧ͔Βग़ྗܥྻΛੜ
12
Slide 13
Slide 13 text
จࣈ͚͔ͩΒਂֶशͰςΩετ
ྨϓϩάϥϜ͕Ͱ͖ͯ͠·͏
ß
Text Understanding from Scratch, Zhang and
LeCun, arXiv 2015.
→จࣈ͚͔ͩΒதӳͷςΩετྨثΛֶश
ß
Learning to Execute, Zaremba and Sutskever,
arXiv 2015.
→RNNͱLTSM͚͔ͩΒPythonϓϩάϥϜΛ
ʮֶशʯ࣮ͯ͠ߦ
13
ӳޠͷݴޠղੳ৽ฉهࣄ͔Β
ΣϒςΩετ
ß
Workshop on Syntactic Analysis on Non-
Canonical Language (SANCL 2012)
ß
Google English Web Treebank (2012)
Þ
ΣϒςΩετʢϒϩάɺχϡʔεάϧʔϓɺ
ϝʔϧɺϦϏϡʔɺQA ʣʹܗଶૉɾߏจʢ
Γड͚ʣใΛλά͚ͮ
22