Slide 1

Slide 1 text

Rodrigo Nemmen IAG USP Black Holes blackholegroup.org @nemmen

Slide 2

Slide 2 text

We entered a new golden age of black hole (astro)physics You can be part of this! blackholegroup.org

Slide 3

Slide 3 text

Index 1.Gravity: General relativity 2.What is a black hole? 3.How to “see” a BH? 4.Gravitational waves 5.Summary 6.Quiz properties of space-time in the strong-field, high-velocity regime and confirm predictions of general relativity for the nonlinear dynamics of highly disturbed black holes. II. OBSERVATION On September 14, 2015 at 09:50:45 UTC, the LIGO Hanford, WA, and Livingston, LA, observatories detected the coincident signal GW150914 shown in Fig. 1. The initial detection was made by low-latency searches for generic gravitational-wave transients [41] and was reported within three minutes of data acquisition [43]. Subsequently, matched-filter analyses that use relativistic models of com- pact binary waveforms [44] recovered GW150914 as the most significant event from each detector for the observa- tions reported here. Occurring within the 10-ms intersite FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain. GW150914 arrived first at L1 and 6.9þ0.5 −0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible PRL 116, 061102 (2016) P H Y S I C A L R E V I E W L E T T E R S week ending 12 FEBRUARY 2016

Slide 4

Slide 4 text

Lagrangian for standard model of particle physics http://www.symmetrymagazine.org/article/the-deconstructed-standard-model-equation gluon (strong force) W and Z bosons (weak force) weak interactions + Higgs Higgs ghosts Faddeev-Popov ghosts S = ∫ ℒ −gd4x δS δϕ = ∂ℒ ∂ϕ − ∂μ ( ∂ℒ ∂(∂μ ϕ) ) + ⋯ = 0 action Lagrange equations

Slide 5

Slide 5 text

Basic idea of general relativity: GRAVITY = SPACETIME CURVATURE

Slide 6

Slide 6 text

A general relativity primer Einstein’s field equation Stress-energy Ricci curvature Metric Ricci scalar Rμν − 1 2 gμν R = 8πG c4 Tμν

Slide 7

Slide 7 text

A general relativity primer Einstein’s field equation Stress-energy Ricci curvature Metric Ricci scalar spacetime curvature 㱺 = constant × matter-energy Rμν − 1 2 gμν R = 8πG c4 Tμν

Slide 8

Slide 8 text

A general relativity primer Einstein’s field equation Stress-energy Ricci curvature Metric Ricci scalar 㱺 For a free particle: Geodesic equation Newtonian analogue Poisson equation spacetime curvature = constant × matter-energy Rμν − 1 2 gμν R = 8πG c4 Tμν Solution to field equation gives Line element Metric

Slide 9

Slide 9 text

Gravity visualized: https://www.youtube.com/watch?v=MTY1Kje0yLg&list

Slide 10

Slide 10 text

Gravity visualized: https://www.youtube.com/watch?v=MTY1Kje0yLg&list

Slide 11

Slide 11 text

The Elegant Universe. Nova / PBS

Slide 12

Slide 12 text

A concise tutorial on general relativity DOI: 10.1119/1.12853

Slide 13

Slide 13 text

Nova disciplina graduação 2018/2 Relatividade geral e aplicações astrofísicas AGA0319

Slide 14

Slide 14 text

What is a black hole? Remarkable prediction of general relativity Normal object Black hole surface event horizon singularity

Slide 15

Slide 15 text

Event horizon: one-way membrane, matter/ energy can fall in, but nothing gets out Black hole event horizon singularity Region inside event horizon causally cut-off from outside RS = 2GM c2 = 2.95 ✓ M M ◆ km Radius of event horizon: Schwarzschild radius

Slide 16

Slide 16 text

What is a black hole? Once inside, nothing escapes Massive, compact astronomical object: gravity so strong that it traps all that fall inside the event horizon

Slide 17

Slide 17 text

Massive, compact astronomical object: gravity so strong that it traps all that fall inside the event horizon What is a black hole? Once inside, nothing escapes Sogro Sogra

Slide 18

Slide 18 text

Massive, compact astronomical object: gravity so strong that it traps all that fall inside the event horizon What is a black hole? Once inside, nothing escapes

Slide 19

Slide 19 text

Massive, compact astronomical object: gravity so strong that it traps all that fall inside the event horizon What is a black hole? Once inside, nothing escapes The Rock

Slide 20

Slide 20 text

https://xkcd.com/681/

Slide 21

Slide 21 text

VENUS MERCURY EARTH 6,379 KM To sun, far down

Slide 22

Slide 22 text

sun MERCURY Radii of objects not to scale 100x deeper Mercury depth gravity well To black hole, very VERY far down

Slide 23

Slide 23 text

ç ç Black holes have deep, relativistic gravity wells ç BLACK HOLE sun 106x deeper depth gravity well

Slide 24

Slide 24 text

Classical vs quantum black holes Credit: BBC Black holes from general relativity are classical objects Quantum BHs: need quantum gravity theory Quantum BHs have weird properties: Hawking radiation Information paradox Will not talk about them

Slide 25

Slide 25 text

surprise them showing places where we see BHs all around us! how can it be? how can they shine? hang-on! Luo+16 Chandra Deep Field South 81 days of exposure

Slide 26

Slide 26 text

How massive can a black hole be? BHs with M ≳ 3 Msun form naturally by gravitational collapse of massive stars No other stable equilibrium available at these masses Open question: Do quantum BHs form naturally?

Slide 27

Slide 27 text

Two populations of black holes Supermassive 106-1010 solar masses one in every galactic nucleus 5-60 solar masses ~107 per galaxy Stellar Open question: Do intermediate-mass BHs exist? How massive are the initial seeds of supermassive BHs?

Slide 28

Slide 28 text

XRBs show dramatic state transitions, whose origin is unknown X-ray binaries, M~5-20Msun, 107 objects per galaxy visible light Credit: NASA GSFC; Britannica

Slide 29

Slide 29 text

LIGO/Virgo: gravitational waves from black holes with M~20-60 Msun visible light Credit: NASA GSFC; Britannica no light!

Slide 30

Slide 30 text

Neutron stars collision → Gas + light → Probably BH w/ M~10 Msun visible light Credit: NASA GSFC; Britannica

Slide 31

Slide 31 text

M81 NGC 1097 M87 One supermassive BH in every galactic nuclei, M~106-1010Msun Do dwarf galaxies host supermassive BHs? visible light Credit: NASA, HST, CXC

Slide 32

Slide 32 text

Criteria used to identify astrophysical BHs Must be compact: radius < few Rs Must be massive: M > several Msun, too massive to be a neutron star (Mns,crit ≤ Msun) These are strong reasons for BH candidates It is possible to empirically prove the existence of event horizons Prove that BHs have event horizons (soon: Event Horizon Telescope) How do we know they are black holes?

Slide 33

Slide 33 text

Black holes are the most perfect macroscopic objects in the universe A black hole has no-hair (no-hair theorem) Made only of spacetime warpage Mass M Spin: angular momentum J Charge Q J = a GM2/c 0  |a|  1 RS = 2GM c2

Slide 34

Slide 34 text

Fg = Fc ) GMm r2 = mv2 r Measuring mass in astronomy Test particle in circular orbit M m v Fc=Fg Best mass estimates are dynamical ) M = v2r G Alternatively, Kepler’s third law P2 r3 = 4⇡2 G(M + m) ) M ⇡ 4⇡2r3 GP2

Slide 35

Slide 35 text

Exercise Suppose a star is measured in a circular orbit with P=15 years and r=1000 au. Compute M. M m Kepler’s third law ) M ⇡ 4⇡2r3 GP2 r 1 au = 1.5E11 m G = 6.67E-11 N m2/kg2 Msun = 2E30 kg

Slide 36

Slide 36 text

Credit: unknown

Slide 37

Slide 37 text

Distribution of masses of neutron stars and stellar mass black holes Özel+12

Slide 38

Slide 38 text

Sistema Solar Sagitário A* Massa = 4×106 MSun

Slide 39

Slide 39 text

Journey to Sagittarius A*: the supermassive black hole at the center of the Milky Way

Slide 40

Slide 40 text

10 light-days = 260 billion km black hole central black hole mass = 4✕106 solar masses Ghez, Schödel, Genzel et al.

Slide 41

Slide 41 text

How to measure black hole spin? J = aGM2 c 0  |a|  1 if t>40’: skip

Slide 42

Slide 42 text

Black hole spin generates spacetime whirlwind (non-Newtonian effect) Huge energy stored in rotating spacetime black hole Credit: Thorne

Slide 43

Slide 43 text

spinning BH https://www.youtube.com/watch?v=9MHuhcFQsBg How to reliably measure black hole spin?

Slide 44

Slide 44 text

How do we observe black holes?

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

No content

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

Credit: ESO Black holes surrounded by accretion disks, release enormous amounts of light Credit: NatGeo v → c near the horizon How efficient is the release of light?

Slide 49

Slide 49 text

m M R

Slide 50

Slide 50 text

Energy released: U = GMm R L = ˙ U = GM ˙ m R Luminosity: For black holes: η ~ 10-40% ) L = ⌘ ˙ mc2 ⌘ / M/R Radiative efficiency:

Slide 51

Slide 51 text

Sugar (sucrose) C12 H22 O11 1g ! 4 kcal= 16.2 kJ = 1e23 eV ⌘ = E mc2 = 1.6 ⇥ 1011erg 9 ⇥ 1020erg = 2 ⇥ 10 10 R. Nemmen

Slide 52

Slide 52 text

Itaipu Dam − 14 GW ⌘ = mgh mc2 = 10 14 ✓ h 100 m ◆

Slide 53

Slide 53 text

⌘ = mv2 2mc2 ⇠ 10 14 ✓ v 200 km/h ◆2

Slide 54

Slide 54 text

Nuclear fusion ⌘ = 0.008 ⇥ 0.1 ⇠ 8 ⇥ 10 4 Tsar bomba

Slide 55

Slide 55 text

Credit: ESO Radiative efficiency: Black holes surrounded by accretion disks, release enormous amounts of light ⌘rad = Erad out Egas in = 10 40% 100x more efficient than nuclear fusion! Most efficient radiators in the universe Radiate across all eletromagnetic spectrum!

Slide 56

Slide 56 text

mass supply to black hole Back-of-the-envelope estimate of accretion disk luminosity mass accretion rate mass of all water on earth ˙ m ⇠ m/t↵ = 1024 g s 1 AAACKnicbZDLSgMxFIYz9VbrrerSTbAILrTOlKJuhKIblxXsBXojk2ba0GRmSM4UyjBv4iP4FG515a6IOx/EdNqFVg8EPv7/HE7O74aCa7DtqZVZWV1b38hu5ra2d3b38vsHdR1EirIaDUSgmi7RTHCf1YCDYM1QMSJdwRru6G7mN8ZMaR74jzAJWUeSgc89TgkYqZe/bPcDiGWC25pLLC+gF7eVxJ6X4Bvs2N24VDYeTsWBAZ1043Mn6eULdtFOC/8FZwEFtKhqL/9pFtFIMh+oIFq3HDuETkwUcCpYkmtHmoWEjsiAtQz6RDJ91h/zUKfYidNTE3xizD72AmWeDzhVfw7HRGo9ka7plASGetmbif95rQi8607M/TAC5tP5Ii8SGAI8yw33uWIUxMQAoYqbb2M6JIpQMOnmTB7O8vV/oV4qOnbReSgXKreLZLLoCB2jU+SgK1RB96iKaoiiJ/SCXtGb9Wy9W1PrY96asRYzh+hXWV/fdVClnQ== AAACKnicbZDLSgMxFIYz9VbrrerSTbAILrTOlKJuhKIblxXsBXojk2ba0GRmSM4UyjBv4iP4FG515a6IOx/EdNqFVg8EPv7/HE7O74aCa7DtqZVZWV1b38hu5ra2d3b38vsHdR1EirIaDUSgmi7RTHCf1YCDYM1QMSJdwRru6G7mN8ZMaR74jzAJWUeSgc89TgkYqZe/bPcDiGWC25pLLC+gF7eVxJ6X4Bvs2N24VDYeTsWBAZ1043Mn6eULdtFOC/8FZwEFtKhqL/9pFtFIMh+oIFq3HDuETkwUcCpYkmtHmoWEjsiAtQz6RDJ91h/zUKfYidNTE3xizD72AmWeDzhVfw7HRGo9ka7plASGetmbif95rQi8607M/TAC5tP5Ii8SGAI8yw33uWIUxMQAoYqbb2M6JIpQMOnmTB7O8vV/oV4qOnbReSgXKreLZLLoCB2jU+SgK1RB96iKaoiiJ/SCXtGb9Wy9W1PrY96asRYzh+hXWV/fdVClnQ== AAACKnicbZDLSgMxFIYz9VbrrerSTbAILrTOlKJuhKIblxXsBXojk2ba0GRmSM4UyjBv4iP4FG515a6IOx/EdNqFVg8EPv7/HE7O74aCa7DtqZVZWV1b38hu5ra2d3b38vsHdR1EirIaDUSgmi7RTHCf1YCDYM1QMSJdwRru6G7mN8ZMaR74jzAJWUeSgc89TgkYqZe/bPcDiGWC25pLLC+gF7eVxJ6X4Bvs2N24VDYeTsWBAZ1043Mn6eULdtFOC/8FZwEFtKhqL/9pFtFIMh+oIFq3HDuETkwUcCpYkmtHmoWEjsiAtQz6RDJ91h/zUKfYidNTE3xizD72AmWeDzhVfw7HRGo9ka7plASGetmbif95rQi8607M/TAC5tP5Ii8SGAI8yw33uWIUxMQAoYqbb2M6JIpQMOnmTB7O8vV/oV4qOnbReSgXKreLZLLoCB2jU+SgK1RB96iKaoiiJ/SCXtGb9Wy9W1PrY96asRYzh+hXWV/fdVClnQ== AAACKnicbZDLSgMxFIYz9VbrrerSTbAILrTOlKJuhKIblxXsBXojk2ba0GRmSM4UyjBv4iP4FG515a6IOx/EdNqFVg8EPv7/HE7O74aCa7DtqZVZWV1b38hu5ra2d3b38vsHdR1EirIaDUSgmi7RTHCf1YCDYM1QMSJdwRru6G7mN8ZMaR74jzAJWUeSgc89TgkYqZe/bPcDiGWC25pLLC+gF7eVxJ6X4Bvs2N24VDYeTsWBAZ1043Mn6eULdtFOC/8FZwEFtKhqL/9pFtFIMh+oIFq3HDuETkwUcCpYkmtHmoWEjsiAtQz6RDJ91h/zUKfYidNTE3xizD72AmWeDzhVfw7HRGo9ka7plASGetmbif95rQi8607M/TAC5tP5Ii8SGAI8yw33uWIUxMQAoYqbb2M6JIpQMOnmTB7O8vV/oV4qOnbReSgXKreLZLLoCB2jU+SgK1RB96iKaoiiJ/SCXtGb9Wy9W1PrY96asRYzh+hXWV/fdVClnQ== m = 1M AAAB/XicbZDLSsNAFIYn9VbrrerSzWARXEhJRNCNUHTjRqhgL5CGMplM2qFzCTOTQgnFp3CrK3fi1mdx4bs4TbPQ1gMDH/9/DufMHyaMauO6X05pZXVtfaO8Wdna3tndq+4ftLVMFSYtLJlU3RBpwqggLUMNI91EEcRDRjrh6Hbmd8ZEaSrFo5kkJOBoIGhMMTJW8vm1B+/7PRlJ06/W3LqbF1wGr4AaKKrZr373IolTToTBDGnte25iggwpQzEj00ov1SRBeIQGxLcoECf6LBrTROcYZPn1U3hizQjGUtknDMzV38MZ4lpPeGg7OTJDvejNxP88PzXxVZBRkaSGCDxfFKcMGglnUcCIKoINm1hAWFF7NsRDpBA2NrCKzcNb/P0ytM/rnlv3Hi5qjZsimTI4AsfgFHjgEjTAHWiCFsBAgmfwAl6dJ+fNeXc+5q0lp5g5BH/K+fwBSeWVSQ== AAAB/XicbZDLSsNAFIYn9VbrrerSzWARXEhJRNCNUHTjRqhgL5CGMplM2qFzCTOTQgnFp3CrK3fi1mdx4bs4TbPQ1gMDH/9/DufMHyaMauO6X05pZXVtfaO8Wdna3tndq+4ftLVMFSYtLJlU3RBpwqggLUMNI91EEcRDRjrh6Hbmd8ZEaSrFo5kkJOBoIGhMMTJW8vm1B+/7PRlJ06/W3LqbF1wGr4AaKKrZr373IolTToTBDGnte25iggwpQzEj00ov1SRBeIQGxLcoECf6LBrTROcYZPn1U3hizQjGUtknDMzV38MZ4lpPeGg7OTJDvejNxP88PzXxVZBRkaSGCDxfFKcMGglnUcCIKoINm1hAWFF7NsRDpBA2NrCKzcNb/P0ytM/rnlv3Hi5qjZsimTI4AsfgFHjgEjTAHWiCFsBAgmfwAl6dJ+fNeXc+5q0lp5g5BH/K+fwBSeWVSQ== AAAB/XicbZDLSsNAFIYn9VbrrerSzWARXEhJRNCNUHTjRqhgL5CGMplM2qFzCTOTQgnFp3CrK3fi1mdx4bs4TbPQ1gMDH/9/DufMHyaMauO6X05pZXVtfaO8Wdna3tndq+4ftLVMFSYtLJlU3RBpwqggLUMNI91EEcRDRjrh6Hbmd8ZEaSrFo5kkJOBoIGhMMTJW8vm1B+/7PRlJ06/W3LqbF1wGr4AaKKrZr373IolTToTBDGnte25iggwpQzEj00ov1SRBeIQGxLcoECf6LBrTROcYZPn1U3hizQjGUtknDMzV38MZ4lpPeGg7OTJDvejNxP88PzXxVZBRkaSGCDxfFKcMGglnUcCIKoINm1hAWFF7NsRDpBA2NrCKzcNb/P0ytM/rnlv3Hi5qjZsimTI4AsfgFHjgEjTAHWiCFsBAgmfwAl6dJ+fNeXc+5q0lp5g5BH/K+fwBSeWVSQ== AAAB/XicbZDLSsNAFIYn9VbrrerSzWARXEhJRNCNUHTjRqhgL5CGMplM2qFzCTOTQgnFp3CrK3fi1mdx4bs4TbPQ1gMDH/9/DufMHyaMauO6X05pZXVtfaO8Wdna3tndq+4ftLVMFSYtLJlU3RBpwqggLUMNI91EEcRDRjrh6Hbmd8ZEaSrFo5kkJOBoIGhMMTJW8vm1B+/7PRlJ06/W3LqbF1wGr4AaKKrZr373IolTToTBDGnte25iggwpQzEj00ov1SRBeIQGxLcoECf6LBrTROcYZPn1U3hizQjGUtknDMzV38MZ4lpPeGg7OTJDvejNxP88PzXxVZBRkaSGCDxfFKcMGglnUcCIKoINm1hAWFF7NsRDpBA2NrCKzcNb/P0ytM/rnlv3Hi5qjZsimTI4AsfgFHjgEjTAHWiCFsBAgmfwAl6dJ+fNeXc+5q0lp5g5BH/K+fwBSeWVSQ== luminosity L ⇠ 0.1 ˙ mc2 ⇠ 1044 erg s 1 AAACLHicbZC7TsMwFIadcivlFmBksaiQGKBKqkp0rGBhYCgSvUhNWjmO01q1k8h2KlVRXoVH4ClYYWJBqCvPgdtmgJYjWfr0/+fYPr8XMyqVZX0ahY3Nre2d4m5pb//g8Mg8PmnLKBGYtHDEItH1kCSMhqSlqGKkGwuCuMdIxxvfzf3OhAhJo/BJTWPicjQMaUAxUloamPUH6EjKoVWxoeNHKuUZxP3qUrStflqrZdCBqSM4JGKoUWb99NrOBmbZqliLgutg51AGeTUH5kzfjxNOQoUZkrJnW7FyUyQUxYxkJSeRJEZ4jIakpzFEnMgrf0JjuUA3XSybwQtt+jCIhD6hggv193CKuJRT7ulOjtRIrnpz8T+vl6ig7qY0jBNFQrx8KEgYVBGcJwd9KghWbKoBYUH1tyEeIYGw0vmWdB726vbr0K5WbB31Y63cuM2TKYIzcA4ugQ1uQAPcgyZoAQyewSt4A+/Gi/FhfBmzZWvByGdOwZ8yvn8ASvalcg== AAACLHicbZC7TsMwFIadcivlFmBksaiQGKBKqkp0rGBhYCgSvUhNWjmO01q1k8h2KlVRXoVH4ClYYWJBqCvPgdtmgJYjWfr0/+fYPr8XMyqVZX0ahY3Nre2d4m5pb//g8Mg8PmnLKBGYtHDEItH1kCSMhqSlqGKkGwuCuMdIxxvfzf3OhAhJo/BJTWPicjQMaUAxUloamPUH6EjKoVWxoeNHKuUZxP3qUrStflqrZdCBqSM4JGKoUWb99NrOBmbZqliLgutg51AGeTUH5kzfjxNOQoUZkrJnW7FyUyQUxYxkJSeRJEZ4jIakpzFEnMgrf0JjuUA3XSybwQtt+jCIhD6hggv193CKuJRT7ulOjtRIrnpz8T+vl6ig7qY0jBNFQrx8KEgYVBGcJwd9KghWbKoBYUH1tyEeIYGw0vmWdB726vbr0K5WbB31Y63cuM2TKYIzcA4ugQ1uQAPcgyZoAQyewSt4A+/Gi/FhfBmzZWvByGdOwZ8yvn8ASvalcg== AAACLHicbZC7TsMwFIadcivlFmBksaiQGKBKqkp0rGBhYCgSvUhNWjmO01q1k8h2KlVRXoVH4ClYYWJBqCvPgdtmgJYjWfr0/+fYPr8XMyqVZX0ahY3Nre2d4m5pb//g8Mg8PmnLKBGYtHDEItH1kCSMhqSlqGKkGwuCuMdIxxvfzf3OhAhJo/BJTWPicjQMaUAxUloamPUH6EjKoVWxoeNHKuUZxP3qUrStflqrZdCBqSM4JGKoUWb99NrOBmbZqliLgutg51AGeTUH5kzfjxNOQoUZkrJnW7FyUyQUxYxkJSeRJEZ4jIakpzFEnMgrf0JjuUA3XSybwQtt+jCIhD6hggv193CKuJRT7ulOjtRIrnpz8T+vl6ig7qY0jBNFQrx8KEgYVBGcJwd9KghWbKoBYUH1tyEeIYGw0vmWdB726vbr0K5WbB31Y63cuM2TKYIzcA4ugQ1uQAPcgyZoAQyewSt4A+/Gi/FhfBmzZWvByGdOwZ8yvn8ASvalcg== AAACLHicbZC7TsMwFIadcivlFmBksaiQGKBKqkp0rGBhYCgSvUhNWjmO01q1k8h2KlVRXoVH4ClYYWJBqCvPgdtmgJYjWfr0/+fYPr8XMyqVZX0ahY3Nre2d4m5pb//g8Mg8PmnLKBGYtHDEItH1kCSMhqSlqGKkGwuCuMdIxxvfzf3OhAhJo/BJTWPicjQMaUAxUloamPUH6EjKoVWxoeNHKuUZxP3qUrStflqrZdCBqSM4JGKoUWb99NrOBmbZqliLgutg51AGeTUH5kzfjxNOQoUZkrJnW7FyUyQUxYxkJSeRJEZ4jIakpzFEnMgrf0JjuUA3XSybwQtt+jCIhD6hggv193CKuJRT7ulOjtRIrnpz8T+vl6ig7qY0jBNFQrx8KEgYVBGcJwd9KghWbKoBYUH1tyEeIYGw0vmWdB726vbr0K5WbB31Y63cuM2TKYIzcA4ugQ1uQAPcgyZoAQyewSt4A+/Gi/FhfBmzZWvByGdOwZ8yvn8ASvalcg== M = 108M AAACAHicbZC7SgNBFIbPxluMt6ilzWAQLCTsimAaIWhjE4hgLpBswuzsJBkyu7PMzAbCksansNXKTmx9EwvfxclmC038YeDj/Odw5vxexJnStv1l5dbWNza38tuFnd29/YPi4VFTiVgS2iCCC9n2sKKchbShmea0HUmKA4/Tlje+m/utCZWKifBRTyPqBngYsgEjWJtSr3bj2L0KqvW7whe6XyzZZTsVWgUngxJkqveL311fkDigoSYcK9Vx7Ei7CZaaEU5nhW6saITJGA9px2CIA6ou/AmLVIpukh4wQ2fG9NFASPNCjdLq7+EEB0pNA890BliP1LI3L/7ndWI9qLgJC6NY05AsFg1ijrRA8zSQzyQlmk8NYCKZ+TYiIywx0SazgsnDWb5+FZqXZccuOw9XpeptlkweTuAUzsGBa6jCPdShAQQkPMMLvFpP1pv1bn0sWnNWNnMMf2R9/gDDnJYN AAACAHicbZC7SgNBFIbPxluMt6ilzWAQLCTsimAaIWhjE4hgLpBswuzsJBkyu7PMzAbCksansNXKTmx9EwvfxclmC038YeDj/Odw5vxexJnStv1l5dbWNza38tuFnd29/YPi4VFTiVgS2iCCC9n2sKKchbShmea0HUmKA4/Tlje+m/utCZWKifBRTyPqBngYsgEjWJtSr3bj2L0KqvW7whe6XyzZZTsVWgUngxJkqveL311fkDigoSYcK9Vx7Ei7CZaaEU5nhW6saITJGA9px2CIA6ou/AmLVIpukh4wQ2fG9NFASPNCjdLq7+EEB0pNA890BliP1LI3L/7ndWI9qLgJC6NY05AsFg1ijrRA8zSQzyQlmk8NYCKZ+TYiIywx0SazgsnDWb5+FZqXZccuOw9XpeptlkweTuAUzsGBa6jCPdShAQQkPMMLvFpP1pv1bn0sWnNWNnMMf2R9/gDDnJYN AAACAHicbZC7SgNBFIbPxluMt6ilzWAQLCTsimAaIWhjE4hgLpBswuzsJBkyu7PMzAbCksansNXKTmx9EwvfxclmC038YeDj/Odw5vxexJnStv1l5dbWNza38tuFnd29/YPi4VFTiVgS2iCCC9n2sKKchbShmea0HUmKA4/Tlje+m/utCZWKifBRTyPqBngYsgEjWJtSr3bj2L0KqvW7whe6XyzZZTsVWgUngxJkqveL311fkDigoSYcK9Vx7Ei7CZaaEU5nhW6saITJGA9px2CIA6ou/AmLVIpukh4wQ2fG9NFASPNCjdLq7+EEB0pNA890BliP1LI3L/7ndWI9qLgJC6NY05AsFg1ijrRA8zSQzyQlmk8NYCKZ+TYiIywx0SazgsnDWb5+FZqXZccuOw9XpeptlkweTuAUzsGBa6jCPdShAQQkPMMLvFpP1pv1bn0sWnNWNnMMf2R9/gDDnJYN AAACAHicbZC7SgNBFIbPxluMt6ilzWAQLCTsimAaIWhjE4hgLpBswuzsJBkyu7PMzAbCksansNXKTmx9EwvfxclmC038YeDj/Odw5vxexJnStv1l5dbWNza38tuFnd29/YPi4VFTiVgS2iCCC9n2sKKchbShmea0HUmKA4/Tlje+m/utCZWKifBRTyPqBngYsgEjWJtSr3bj2L0KqvW7whe6XyzZZTsVWgUngxJkqveL311fkDigoSYcK9Vx7Ei7CZaaEU5nhW6saITJGA9px2CIA6ou/AmLVIpukh4wQ2fG9NFASPNCjdLq7+EEB0pNA890BliP1LI3L/7ndWI9qLgJC6NY05AsFg1ijrRA8zSQzyQlmk8NYCKZ+TYiIywx0SazgsnDWb5+FZqXZccuOw9XpeptlkweTuAUzsGBa6jCPdShAQQkPMMLvFpP1pv1bn0sWnNWNnMMf2R9/gDDnJYN black hole mass L ~ 1010 Lsun ~ 1 MEarth c2 every 3 hours t↵ = r 2r3 GM AAACF3icbVC7SgNBFJ2NrxhfUUubwSBYSNiNgjZC0EIbIYJ5QHYNs5PZZMjsw5m7gbDsB/gJfoWtVnZia2nhvzhJttDEAwOHc87lzj1uJLgC0/wycguLS8sr+dXC2vrG5lZxe6ehwlhSVqehCGXLJYoJHrA6cBCsFUlGfFewpju4HPvNIZOKh8EdjCLm+KQXcI9TAlrqFEvQSWzpY89L8Tm21YOExPYkoUlF3h+nydVNmuqUWTYnwPPEykgJZah1it92N6SxzwKggijVtswInIRI4FSwtGDHikWEDkiPtTUNiM/UUXfIIzWhTjK5K8UH2uxiL5T6BYAn6u/hhPhKjXxXJ30CfTXrjcX/vHYM3pmT8CCKgQV0usiLBYYQj0vCXS4ZBTHShFDJ9bcx7RPdCugqC7oPa/b6edKolC2zbN2elKoXWTN5tIf20SGy0CmqomtUQ3VE0SN6Ri/o1Xgy3ox342MazRnZzC76A+PzB+TEn+8= AAACF3icbVC7SgNBFJ2NrxhfUUubwSBYSNiNgjZC0EIbIYJ5QHYNs5PZZMjsw5m7gbDsB/gJfoWtVnZia2nhvzhJttDEAwOHc87lzj1uJLgC0/wycguLS8sr+dXC2vrG5lZxe6ehwlhSVqehCGXLJYoJHrA6cBCsFUlGfFewpju4HPvNIZOKh8EdjCLm+KQXcI9TAlrqFEvQSWzpY89L8Tm21YOExPYkoUlF3h+nydVNmuqUWTYnwPPEykgJZah1it92N6SxzwKggijVtswInIRI4FSwtGDHikWEDkiPtTUNiM/UUXfIIzWhTjK5K8UH2uxiL5T6BYAn6u/hhPhKjXxXJ30CfTXrjcX/vHYM3pmT8CCKgQV0usiLBYYQj0vCXS4ZBTHShFDJ9bcx7RPdCugqC7oPa/b6edKolC2zbN2elKoXWTN5tIf20SGy0CmqomtUQ3VE0SN6Ri/o1Xgy3ox342MazRnZzC76A+PzB+TEn+8= AAACF3icbVC7SgNBFJ2NrxhfUUubwSBYSNiNgjZC0EIbIYJ5QHYNs5PZZMjsw5m7gbDsB/gJfoWtVnZia2nhvzhJttDEAwOHc87lzj1uJLgC0/wycguLS8sr+dXC2vrG5lZxe6ehwlhSVqehCGXLJYoJHrA6cBCsFUlGfFewpju4HPvNIZOKh8EdjCLm+KQXcI9TAlrqFEvQSWzpY89L8Tm21YOExPYkoUlF3h+nydVNmuqUWTYnwPPEykgJZah1it92N6SxzwKggijVtswInIRI4FSwtGDHikWEDkiPtTUNiM/UUXfIIzWhTjK5K8UH2uxiL5T6BYAn6u/hhPhKjXxXJ30CfTXrjcX/vHYM3pmT8CCKgQV0usiLBYYQj0vCXS4ZBTHShFDJ9bcx7RPdCugqC7oPa/b6edKolC2zbN2elKoXWTN5tIf20SGy0CmqomtUQ3VE0SN6Ri/o1Xgy3ox342MazRnZzC76A+PzB+TEn+8= AAACF3icbVC7SgNBFJ2NrxhfUUubwSBYSNiNgjZC0EIbIYJ5QHYNs5PZZMjsw5m7gbDsB/gJfoWtVnZia2nhvzhJttDEAwOHc87lzj1uJLgC0/wycguLS8sr+dXC2vrG5lZxe6ehwlhSVqehCGXLJYoJHrA6cBCsFUlGfFewpju4HPvNIZOKh8EdjCLm+KQXcI9TAlrqFEvQSWzpY89L8Tm21YOExPYkoUlF3h+nydVNmuqUWTYnwPPEykgJZah1it92N6SxzwKggijVtswInIRI4FSwtGDHikWEDkiPtTUNiM/UUXfIIzWhTjK5K8UH2uxiL5T6BYAn6u/hhPhKjXxXJ30CfTXrjcX/vHYM3pmT8CCKgQV0usiLBYYQj0vCXS4ZBTHShFDJ9bcx7RPdCugqC7oPa/b6edKolC2zbN2elKoXWTN5tIf20SGy0CmqomtUQ3VE0SN6Ri/o1Xgy3ox342MazRnZzC76A+PzB+TEn+8= free-fall timescale

Slide 57

Slide 57 text

Hercules A Black holes also produce relativistic jets of particles Size of the galaxy

Slide 58

Slide 58 text

Hercules A 3C 31 ~1 Mpc ~100 kpc M87 Cosmic particle accelerators! Black holes also produce relativistic jets of particles

Slide 59

Slide 59 text

Gamma-ray bursts 3C 31 4 I.F. Mirabel Fig. 1.2 The British journal Nature announced on July 16, 1992 the discovery of a microquasar in the Galactic center region [22]. The image shows the synchrotron emission at a radio wavelength Black hole binaries (microquasars) ~1 pc 1E1740.7-2942 ~1 Mpc ~100 kpc Active galactic nuclei ~10-4 pc? Tidal disruption events

Slide 60

Slide 60 text

if t>45’: goto slide 88 do not use goto when coding!

Slide 61

Slide 61 text

INTERROMPEMOS A PROGRAMAÇÃO

Slide 62

Slide 62 text

MOMENTO NERD

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

Collision of neutron stars: converted 5% of Msunc2 into GWs and light Swope Foley distance = 130 million ly Soares-Santos Quasars: L~1045 erg/s Bahcall+1997 distance = 5 billion ly Hubble LIGO

Slide 68

Slide 68 text

How are relativistic jets produced by black holes? Conjecture: from spinning black holes Growing evidence that this is correct Theory/simulations Observations (?)

Slide 69

Slide 69 text

https://www.youtube.com/watch?v=9MHuhcFQsBg Penrose process: Spinning black hole has free energy that can be extracted Rotational energy of spacetime (frame dragging) Thought experiment by Penrose that demonstrates the principle, probably not important in astrophysics But magnetized accretion disks is promising Penrose 1969 Ruffini & Wilson 1975; Blandford & Znajek 1977

Slide 70

Slide 70 text

Toy model for jet production from black hole: rotati accretion + B Semenov+04, Science 1.0 as a t rB ˙ MB) with ency d 10 able possibilities remain to be better explored in future simula- tions of accretion flows. Interestingly enough, s is similar to the dispersion of s values obtained in the hydrodynamic RIAF simulations of Yuan, Wu & Bu (2012); Bu et al. (2013) for a range of initial conditions. Range of black hole spins and/or magnetic flux threading the horizon – If powerful jets are produced via the BZ mecha- nism then the two fundamental parameters that regulate the jet power are the black hole spin a and the magnetic flux h threading the horizon, besides the mass (Blandford & Znajek 1977; Semenov, Dyadechkin & Punsly 2004): Pjet / ⇠ ✓ a h M ◆ 2 ; (9) i.e., a and h are degenerate to some extent (cf. Jet power Blandford & Znajek 77; Komissarov+; Nemmen+07; Tchekhovskoy+ spin magnetic flux Blandford-Znajek mechanism: magnetic flux tube spinning black hole ergosphere ⇠ a2 ˙ Mc2 ⊵

Slide 71

Slide 71 text

Kudos to Alice Harding (NASA GSFC) https://www.youtube.com/watch?v=R173dLIktsw How to make a black hole jet at home: Homopolar generator

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

Gustavo Soares PhD Artur Vemado undergrad (IC) Henrique Gubolin Msc Fabio Cafardo PhD Raniere Menezes PhD Ivan Almeida Msc https://blackholegroup.org Rodrigo Nemmen Apply to join my group Roberta Pereira undergrad (IC)

Slide 74

Slide 74 text

“Weather forecast for black holes” Virtual laboratory of numerical relativistic astrophysics Gravity: general relativity Gas (plasma) Electromagnetic fields

Slide 75

Slide 75 text

Required physics: Fluid dynamics + electrodynamics Plus: equation of state D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ Fluid dynamics conservation equations Mass Momentum Energy D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ r · Frad r · q D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ r · Frad r · q D⇢ Dt + ⇢r · v = 0 ⇢ Dv Dt = rp ⇢r + r · T ⇢ D(e/⇢) Dt = pr · v + T2/µ Maxwell equations

Slide 76

Slide 76 text

Equations of general relativistic magnetohydrodynamics Plus: equation of state ideal MHD condition Kerr metric Conservation of Particle number Energy-momentum r⌫(⇢u⌫) = 0 r⌫Tµ⌫ = 0 r⌫ ⇤ Fµ⌫ = 0 r⌫Fµ⌫ = Jµ Maxwell equations r⌫ ⇤ Fµ⌫ = 0 r⌫Fµ⌫ = Jµ Fµ⌫u⌫ = 0 ds2 = ↵2dt2 + ij(dxi + idt)(dxj + p = ( 1)⇢✏ ;l where Tl is the stress energy tensor. In a coordinate basis, @t ffiffiffiffiffiffiffi À g p Tt À Á ¼ À @i ffiffiffiffiffiffiffi À g p Ti À Á þ ffiffiffiffiffiffiffi À g p T À ; ð4Þ where i denotes a spatial index and À is the connection. The energy momentum equations have been written with the free index down for a reason. Symmetries of the metric give rise to conserved currents. In the Kerr metric, for exam- ple, the axisymmetry and stationary nature of the metric give rise to conserved angular momentum and energy cur- rents. In general, for metrics with an ignorable coordinate xl the source terms on the right-hand side of the evolution equation for Tt l vanish. These source terms do not vanish when the equation is written with both indices up. The stress energy tensor for a system containing only a perfect fluid and an electromagnetic field is the sum of a fluid part, Tl fluid ¼ ð þ u þ pÞulu þ pgl ð5Þ Fl; þ The rest of Maxwell’s equ and are not needed for MHD. Maxwell’s equations c by taking the dual of equ F Here FÃ l ¼ 1 2 lF is t tensor (MTW: ‘‘ Maxwel FÃl which can be proved by t The components of blul ¼ 0. Following, e.g where i denotes a spatial index and À is the connection The energy momentum equations have been written w the free index down for a reason. Symmetries of the me give rise to conserved currents. In the Kerr metric, for exa ple, the axisymmetry and stationary nature of the me give rise to conserved angular momentum and energy c rents. In general, for metrics with an ignorable coordin xl the source terms on the right-hand side of the evolut equation for Tt l vanish. These source terms do not van when the equation is written with both indices up. The stress energy tensor for a system containing onl perfect fluid and an electromagnetic field is the sum o fluid part, Tl fluid ¼ ð þ u þ pÞulu þ pgl (here u internal energy and p pressure), and electromagnetic part, Tl EM ¼ FlF À 1 4 glFF :

Slide 77

Slide 77 text

256 x 256 x 64 r θ 3D computational mesh 4×106 resolution elements Need to evolve to t>15000 M (4 yrs for a 109 BH) Global, general relativistic MHD (GRMHD) simulations of gas around spinning BHs HARM code + MPI + 3D = HARMPI Gammie+03; Tchekhovskoy

Slide 78

Slide 78 text

McKinney et al. 2013, Science Black hole weather forecast

Slide 79

Slide 79 text

Moscibrodzka Jet-disk connection? Predictive model for full radiation spectrum Predictive model for dynamical evolution

Slide 80

Slide 80 text

We are starting to treat the radiation from these systems y x Units of GM/c2 phd, Gustavo soares Work in progress Preliminar result: Null geodesics in x-y plane around Kerr black hole

Slide 81

Slide 81 text

y x Units of GM/c2 phd, Gustavo soares Work in progress Preliminar result: Null geodesics in x-y plane around Kerr black hole

Slide 82

Slide 82 text

y x Units of GM/c2 Work in progress Preliminar result: Null geodesics in x-y plane around Kerr black hole

Slide 83

Slide 83 text

Chan+15a,b ApJ radio 10 GHz 1.3mm IR 2.1μm X-rays Future: Radiative transfer and GPU-accelerated ra tracing in BH spacetimes ptg

Slide 84

Slide 84 text

Remarkable connection between central black holes and host galaxies: the M-σ relation M BH = 2 ⇥ 108M ✓ 200 km s 1 ◆ 5.6 Woo+13; McConnell & Ma 13; Heckman & Best ARA&A 14 1010 109 108 107 106 60 80 100 200 300 400 Elliptical/classical bulge Pseudobulge AGN Quiescent 9.0 9.5 1 6 7 8 9 10 M BH /M Velocity dispersion/km s–1 lo log 10 (M BH /M ) MBH = 0.002 M * All galaxies AGN: L bol /L AGN: L bol /L a b Figure 9 nualreviews.org sonal use only. mass central black hole host galaxy propriety: σbulge (km/s) Fundamental link between BH growth and galaxy evolution

Slide 85

Slide 85 text

Why are black holes and host galaxies connected? SMBH Grapefruit

Slide 86

Slide 86 text

Energy release from supermassive BHs impact large scale structure formation (“AGN feedback”) <10-4 pc galaxy time SMBH BH accretion outflows

Slide 87

Slide 87 text

How do supermassive black holes affect their host galaxies? What is their cosmological evolution?

Slide 88

Slide 88 text

10 Mpc Fabian 12 ARAA; Tombesi+15 Nature; Cheung+16 Nature; Vogelsberger+14 Nature Energy release from supermassive BHs impact large scale structure formation (“AGN feedback”) “BH explosions” in the simulation

Slide 89

Slide 89 text

Gravitational waves open GWs for undergrads.key

Slide 90

Slide 90 text

PI: S. Doeleman (MIT/Haystack) idéia original: H. Falcke (Radboud) Attaining the impossible: first image of an event horizon just around the corner Credit: Science Magazine

Slide 91

Slide 91 text

Goal of Event Horizon Telescope Credit: Warner, Paramount

Slide 92

Slide 92 text

Summary: Black holes Black holes: collapsed objects from which nothing can escape (once inside) Astrophysical labs of general relativity, fluid dynamics and electrodynamics that can’t be found on Earth Brightest systems in the universe Important for galaxy formation/evolution Cosmic particle accelerators Sources of gravitational waves If interested in doing research in these topics, please talk to me Soon: first image of a black hole blackholegroup.org radio-gamma light cosmic rays neutrinos GWs

Slide 93

Slide 93 text

Quiz time! https://kahoot.com/

Slide 94

Slide 94 text

Github Twitter Web E-mail Bitbucket Facebook Group figshare [email protected] rodrigonemmen.com @nemmen rsnemmen facebook.com/rodrigonemmen nemmen blackholegroup.org bit.ly/2fax2cT