Slide 1

Slide 1 text

Active Brownian Motion Ronojoy Adhikari The Institute Of Mathematical Sciences ⌘ ⌘0 = (1 + 5 2 + 5.2 2) D = µkBT Better than anyone before or after him, he knew how to ... make use of statistical fluctuations.

Slide 2

Slide 2 text

Fluctuation, dissipation and momentum conservation ⌦n = µRT nm · Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation

Slide 3

Slide 3 text

Fluctuation, dissipation and momentum conservation ⌦n = µRT nm · Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation - mobility matrices encode momentum conservation - mobility matrices are symmetric (Onsager) - mobility matrices are positive definite (dissipation) - “square roots” are Cholesky factors - Gibbs distribution is stationary for gradient flows (FDT)

Slide 4

Slide 4 text

Fluctuation, dissipation and momentum conservation ⌦n = µRT nm · Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation - mobility matrices encode momentum conservation - mobility matrices are symmetric (Onsager) - mobility matrices are positive definite (dissipation) - “square roots” are Cholesky factors - Gibbs distribution is stationary for gradient flows (FDT) How do we extend this paradigm to suspensions of active particles ?

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te

Slide 8

Slide 8 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te

Slide 9

Slide 9 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n

Slide 10

Slide 10 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n = pI + ⌘(rv + rvT )

Slide 11

Slide 11 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT )

Slide 12

Slide 12 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT )

Slide 13

Slide 13 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0

Slide 14

Slide 14 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions

Slide 15

Slide 15 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn

Slide 16

Slide 16 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions can produce fluid flow without rigid body motion! v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn

Slide 17

Slide 17 text

neglect inertia, set external forces and torques to zero : M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions can produce fluid flow without rigid body motion! what systems can these describe ? v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn

Slide 18

Slide 18 text

E. Coli Paramecium

Slide 19

Slide 19 text

larger faster ⇠ µm ⇠ 100µm ⇠ cm ⇠ m E. Coli Paramecium

Slide 20

Slide 20 text

larger faster ⇠ µm ⇠ 100µm ⇠ cm ⇠ m E. Coli Paramecium

Slide 21

Slide 21 text

larger faster ⇠ µm ⇠ 100µm ⇠ cm ⇠ m E. Coli Paramecium Produce flow in the absence of body forces and torques

Slide 22

Slide 22 text

The main theoretical result

Slide 23

Slide 23 text

Propulsion matrices Singh, Ghose, RA, arxiv:1411.0278 Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m + ⇡T l nm · Vl+1 m ⌦n = µRT nm · Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m + ⇡Rl nm · Vl+1 m mobility matrices many-body dissipation Wiener processes many-body fluctuation propulsion matrices many-body activity - propulsion matrices encode momentum conservation - propulsion matrices produce ballistic motion - propulsion matrices are positive definite (dissipation) - Gibbs distribution is not stationary for gradient flows - energy from boundary condition is dissipated in fluid v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn Extension of Einstein’s theory of Brownian motion to active suspensions

Slide 24

Slide 24 text

Irreducible expansions of active flow rotation 0 = I · n dS 0 = I r ⇥ · n translation + ...

Slide 25

Slide 25 text

Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin motors J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)

Slide 26

Slide 26 text

Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin motors J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)

Slide 27

Slide 27 text

Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin motors J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)

Slide 28

Slide 28 text

Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin motors Complex, time-dependent flow field created by activity J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)

Slide 29

Slide 29 text

Experiment Theory J. S. Guasto, K. A. Johnson, J. P. Gollub PRL 105 (2010) S. Ghose, RA PRL 112 (2014)

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

The main numerical result

Slide 38

Slide 38 text

Moran and Posner, JFM 680 (2011) Pandey, Kumar, RA, arxiv:1408.0433 Non-equilibrium steady states in suspensions of active rods

Slide 39

Slide 39 text

Apolar, active rods contractile flow || long axis extensile flow || long axis “contractile active rod” “extensile active rod” Recently synthesized by Roy group (IISER-K) Pandey, Kumar, RA, arxiv:1408.0433

Slide 40

Slide 40 text

Extensile active rods - pair dynamics

Slide 41

Slide 41 text

Extensile active rods - pair dynamics

Slide 42

Slide 42 text

Contractile active rods - pair dynamics

Slide 43

Slide 43 text

Contractile active rods - pair dynamics

Slide 44

Slide 44 text

Extensile suspension : phase aggregated steady state

Slide 45

Slide 45 text

Extensile suspension : phase aggregated steady state

Slide 46

Slide 46 text

Relaxation to steady state : mean cluster size

Slide 47

Slide 47 text

Contractile suspension : micro-structured steady states asters form at low concentration

Slide 48

Slide 48 text

Contractile suspension : micro-structured steady states asters form at low concentration

Slide 49

Slide 49 text

Contractile suspension : micro-structured steady states clusters form at high concentration activity destabilizes smectic order

Slide 50

Slide 50 text

Contractile suspension : micro-structured steady states clusters form at high concentration activity destabilizes smectic order

Slide 51

Slide 51 text

Low entropy states maintained by energy dissipation Palacci et al, Science 339 (2013)

Slide 52

Slide 52 text

Low entropy states maintained by energy dissipation Palacci et al, Science 339 (2013) extensile flow contractile flow

Slide 53

Slide 53 text

'I called on him [Brown] two or three times before the voyage of the Beagle (1831), and on one occasion he asked me to look through a microscope and describe what I saw. This I did, and believe now that it was the marvelous currents of protoplasm in some vegetable cell. I then asked him what I had seen; but he answered me, "That is my little secret".'