Slide 1

Slide 1 text

PROS AND CONS OF SCALA AS A SERVER-SIDE PROGRAMMING LANGUAGE AT SHIFTFORWARD / Joao Azevedo @jcazevedo http://jcazevedo.net/commit2016

Slide 2

Slide 2 text

ABOUT ME Graduated from FEUP in 2010; Worked on a crew-scheduling application for a railway company at SISCOG from 2010 to 2011; Worked on mobile application development and signal analysis tools at Fraunhofer Portugal from 2011 to 2012; At Shi Forward since 2012, working on distributed, responsive and scalable systems for the online advertising industry.

Slide 3

Slide 3 text

SHIFTFORWARD: WHY SCALA IN THE FIRST PLACE?

Slide 4

Slide 4 text

STATICALLY TYPED WITH DECENT TYPE INFERENCE Specifying program invariants at compile time: Increases development speed; Removes the need for some classes of tests. Not having to declare every single type removes excessive verbosity.

Slide 5

Slide 5 text

JVM Platform independence (predictable runtime environment) eases the deployment of services; The ecosystem is very rich: libraries and tools.

Slide 6

Slide 6 text

CONCURRENCY Thread-based concurrency (from Java); Actor-based concurrency (inspired by Erlang, available in Akka); Parallel collections; Controllable immutability.

Slide 7

Slide 7 text

SCALA PROS: THE TYPE SYSTEM

Slide 8

Slide 8 text

SCALA CLASS HIERARCHY AND UNIFIED TYPES

Slide 9

Slide 9 text

PARAMETRIC POLYMORPHISM d e f d u p [ T ] ( x : T , n : I n t ) : L i s t [ T ] = i f ( n = = 0 ) N i l e l s e x : : d u p ( x , n - 1 ) s c a l a > d u p ( 3 , 3 ) r e s 0 : L i s t [ I n t ] = L i s t ( 3 , 3 , 3 ) s c a l a > d u p ( " t h r e e " , 3 ) r e s 1 : L i s t [ S t r i n g ] = L i s t ( t h r e e , t h r e e , t h r e e )

Slide 10

Slide 10 text

TYPE INFERENCE d e f i d [ T ] ( x : T ) = x s c a l a > v a l x = i d ( 3 2 2 ) x : I n t = 3 2 2 s c a l a > v a l x = i d ( " h e y " ) x : S t r i n g = h e y

Slide 11

Slide 11 text

FUNCTIONS AS TYPES d e f f o o [ A , B ] ( l : L i s t [ A ] , f : A = > B ) : L i s t [ B ] = i f ( l . l e n g t h = = 0 ) N i l e l s e f ( l . h e a d ) : : f o o ( l . t a i l , f ) s c a l a > f o o ( L i s t ( 1 , 2 , 3 ) , { x : I n t = > x * 2 } ) r e s 0 : L i s t [ I n t ] = L i s t ( 2 , 4 , 6 )

Slide 12

Slide 12 text

TRAITS Collection of fields and behaviors that can be extended or mixed in to classes. t r a i t C a r { v a l b r a n d : S t r i n g d e f e m i t B r a n d : S t r i n g = " M y b r a n d i s " + b r a n d } t r a i t S h i n y { v a l s h i n e R e f l e c t i o n : I n t } c l a s s B M W e x t e n d s C a r w i t h S h i n y { v a l b r a n d = " B M W " v a l s h i n e R e f l e c t i o n = 1 2 } s c a l a > v a l b m w = n e w B M W b m w : B M W = B M W @ 2 d a 8 e d 8 0 s c a l a > b m w . e m i t B r a n d r e s 0 : S t r i n g = M y b r a n d i s B M W

Slide 13

Slide 13 text

SCALA PROS: DEFINING DOMAIN OBJECTS

Slide 14

Slide 14 text

CASE CLASSES c a s e c l a s s U s e r ( i d : I n t , n a m e : S t r i n g , a g e : I n t ) Can be constructed without using n e w ; Automatically have equality and hash code methods; Nice t o S t r i n g methods; Pattern matching.

Slide 15

Slide 15 text

CASE CLASSES c a s e c l a s s U s e r ( i d : I n t , n a m e : S t r i n g , a g e : I n t ) c a s e c l a s s S i t e ( u s e r s : L i s t [ U s e r ] ) v a l s i t e 1 = S i t e ( L i s t ( U s e r ( 0 , " a l i c e " , 3 7 ) , U s e r ( 1 , " b o b " , 4 6 ) ) ) v a l s i t e 2 = S i t e ( L i s t ( U s e r ( 0 , " a l i c e " , 3 7 ) , U s e r ( 1 , " b o b " , 4 6 ) ) ) s c a l a > s i t e 1 . t o S t r i n g r e s 0 : S t r i n g = S i t e ( L i s t ( U s e r ( 0 , a l i c e , 3 7 ) , U s e r ( 1 , b o b , 4 6 ) ) ) s c a l a > s i t e 1 = = s i t e 2 r e s 1 : B o o l e a n = t r u e

Slide 16

Slide 16 text

PATTERN MATCHING d e f a v e r a g e A g e ( s i t e : S i t e ) = { d e f a g e S u m ( u s e r s : L i s t [ U s e r ] ) : I n t = u s e r s m a t c h { c a s e U s e r ( _ , _ , a g e ) : : r e s t = > a g e + a g e S u m ( r e s t ) c a s e N i l = > 0 } a g e S u m ( s i t e . u s e r s ) / s i t e . u s e r s . l e n g t h } v a l s i t e 1 = S i t e ( L i s t ( U s e r ( 0 , " a l i c e " , 3 7 ) , U s e r ( 1 , " b o b " , 4 6 ) ) ) s c a l a > a v e r a g e A g e ( s i t e 1 ) r e s 0 : I n t = 4 1

Slide 17

Slide 17 text

EXAMPLE: MODELING JSON s e a l e d t r a i t J s V a l u e { d e f t o J s o n S t r i n g : S t r i n g } c a s e c l a s s J s N u m b e r ( n : I n t ) e x t e n d s J s V a l u e { d e f t o J s o n S t r i n g = n . t o S t r i n g } c a s e c l a s s J s S t r i n g ( s : S t r i n g ) e x t e n d s J s V a l u e { d e f t o J s o n S t r i n g = " \ " " + s + " \ " " } c a s e c l a s s J s A r r a y ( v a l u e s : A r r a y [ J s V a l u e ] ) e x t e n d s J s V a l u e { d e f t o J s o n S t r i n g = { v a l e l e m e n t s S t r i n g = v a l u e s . m a p ( _ . t o J s o n S t r i n g ) . m k S t r i n g ( " , " ) " [ " + e l e m e n t s S t r i n g + " ] " } }

Slide 18

Slide 18 text

EXAMPLE: MODELING JSON c a s e c l a s s J s O b j e c t ( v a l u e s : M a p [ S t r i n g , J s V a l u e ] ) e x t e n d s J s V a l u e { d e f t o J s o n S t r i n g = { v a l e l e m e n t s = v a l u e s . m a p { c a s e ( k , v ) = > " \ " " + k + " \ " : " + v . t o J s o n S t r i n g } " { " + e l e m e n t s . m k S t r i n g ( " , " ) + " } " } } v a l u s e r J s o n = J s O b j e c t ( M a p ( " i d " - > J s N u m b e r ( 0 ) , " n a m e " - > J s S t r i n g ( " a l i c e " ) , " a g e " - > J s N u m b e r ( 3 7 ) ) ) s c a l a > u s e r J s o n . t o J s o n S t r i n g r e s 0 : S t r i n g = { " i d " : 0 , " n a m e " : " a l i c e " , " a g e " : 3 7 }

Slide 19

Slide 19 text

SCALA PROS: MONADS

Slide 20

Slide 20 text

A WAY TO ABSTRACT COMPUTATIONS t r a i t M [ A ] d e f u n i t [ A ] : A = > M [ A ] = ? ? ? d e f f l a t M a p [ A , B ] : M [ A ] = > ( A = > M [ B ] ) = > M [ B ] = ? ? ?

Slide 21

Slide 21 text

MONADIC OPERATIONS EVERYWHERE s c a l a > L i s t ( 1 , 2 , 3 ) . f l a t M a p { x = > L i s t ( x - 1 , x , x + 1 ) } r e s 0 : L i s t [ I n t ] = L i s t ( 0 , 1 , 2 , 1 , 2 , 3 , 2 , 3 , 4 ) s c a l a > L i s t ( 1 , 2 , 3 ) . m a p { x = > x * 2 } r e s 1 : L i s t [ I n t ] = L i s t ( 2 , 4 , 6 )

Slide 22

Slide 22 text

(FLAT)MAP IS THE GLUE v a l l 1 = L i s t ( 1 , 2 ) v a l l 2 = L i s t ( 8 , 9 ) l 1 f l a t M a p { v 1 = > l 2 m a p { v 2 = > v 1 * v 2 } } r e s 0 : L i s t [ I n t ] = L i s t ( 8 , 9 , 1 6 , 1 8 )

Slide 23

Slide 23 text

FOR COMPREHENSIONS v a l l 1 = L i s t ( 1 , 2 ) v a l l 2 = L i s t ( 8 , 9 ) f o r { v 1 < - l 1 v 2 < - l 2 } y i e l d v 1 * v 2 r e s 0 : L i s t [ I n t ] = L i s t ( 8 , 9 , 1 6 , 1 8 )

Slide 24

Slide 24 text

REUSABLE COMPONENTS d e f f ( v : I n t ) = v * 2 v a l l = L i s t ( 1 , 2 , 3 , 4 ) v a l o = S o m e ( 4 ) v a l t = T r y ( 5 ) s c a l a > l . m a p ( f ) r e s 0 : L i s t [ I n t ] = L i s t ( 2 , 4 , 6 , 8 ) s c a l a > o . m a p ( f ) r e s 1 : O p t i o n [ I n t ] = S o m e ( 8 ) s c a l a > t . m a p ( f ) r e s 2 : s c a l a . u t i l . T r y [ I n t ] = S u c c e s s ( 1 0 )

Slide 25

Slide 25 text

SCALA PROS: TYPE CLASSES

Slide 26

Slide 26 text

PREREQUISITE: IMPLICIT PARAMETERS d e f a d d e r ( a : I n t ) ( i m p l i c i t b : I n t ) = a + b s c a l a > a d d e r ( 2 ) < c o n s o l e > : 1 3 : e r r o r : c o u l d n o t f i n d i m p l i c i t v a l u e f o r p a r a m e t e r b : I n t a d d e r ( 2 ) ^ s c a l a > i m p l i c i t v a l x = 5 x : I n t = 5 s c a l a > a d d e r ( 2 ) r e s 0 : I n t = 7

Slide 27

Slide 27 text

PREREQUISITE: IMPLICIT CONVERSIONS d e f d o u b l e ( v : I n t ) = v * 2 i m p l i c i t d e f s t r i n g T o I n t ( s : S t r i n g ) = s . t o I n t s c a l a > d o u b l e ( " 1 2 3 4 " ) r e s 0 : I n t = 2 4 6 8

Slide 28

Slide 28 text

AD HOC POLYMORPHISM t r a i t J s o n F o r m a t [ A ] { d e f w r i t e ( v a l u e : A ) : J s V a l u e d e f r e a d ( j s o n : J s V a l u e ) : A } d e f t o J s o n [ A ] ( a : A ) ( i m p l i c i t f o r m a t : J s o n F o r m a t [ A ] ) : S t r i n g = { f o r m a t . w r i t e ( a ) . t o J s o n S t r i n g } i m p l i c i t o b j e c t I n t J s o n F o r m a t e x t e n d s J s o n F o r m a t [ I n t ] { d e f w r i t e ( v a l u e : I n t ) = J s N u m b e r ( v a l u e ) d e f r e a d ( j s o n : J s V a l u e ) = j s o n m a t c h { c a s e J s N u m b e r ( v a l u e ) = > v a l u e c a s e _ = > t h r o w n e w E x c e p t i o n ( " U n e x p e c t e d J S O N t y p e " ) } } s c a l a > t o J s o n ( 1 ) r e s 7 : S t r i n g = 1 s c a l a > t o J s o n ( " I ' m a s t r i n g ! " ) < c o n s o l e > : 1 7 : e r r o r : c o u l d n o t f i n d i m p l i c i t v a l u e f o r p a r a m e t e r f o r m a t : J s o n F o r m a t [ S t r i n g ] t o J s o n ( " I ' m a s t r i n g ! " ) ^

Slide 29

Slide 29 text

EXTENSION METHODS t r a i t J s o n W r i t a b l e [ A ] { d e f t o J s o n : S t r i n g } i m p l i c i t d e f t o J s o n W r i t e a b l e [ A ] ( v : A ) ( i m p l i c i t f o r m a t : J s o n F o r m a t [ A ] ) = n e w J s o n W r i t a b l e [ A ] { d e f t o J s o n = f o r m a t . w r i t e ( v ) . t o J s o n S t r i n g } s c a l a > 1 . t o J s o n r e s 0 : S t r i n g = 1 s c a l a > U s e r ( 0 , " a l i c e " , 3 7 ) . t o J s o n r e s 1 : S t r i n g = { " i d " : 0 , " n a m e " : " a l i c e " , " a g e " : 3 7 }

Slide 30

Slide 30 text

SCALA PROS: CONCURRENCY

Slide 31

Slide 31 text

FUTURE s c a l a > F u t u r e { / * e x p e n s i v e c o m p u t a t i o n * / 2 } r e s 0 : s c a l a . c o n c u r r e n t . F u t u r e [ I n t ] = s c a l a . c o n c u r r e n t . i m p l . P r o m i s e $ D e f a u l t P r o m i s e @ 2 c c 4 4 a d s c a l a > r e s 0 . o n C o m p l e t e ( p r i n t l n ) S u c c e s s ( 2 )

Slide 32

Slide 32 text

COMPOSING FUTURES

Slide 33

Slide 33 text

FUTURE IS A MONAD v a l u s e r F u t u r e : F u t u r e [ U s e r ] = u s e r I n f o ( r e q u e s t . u s e r n a m e ) v a l g e o F u t u r e : F u t u r e [ G e o ] = u s e r G e o ( r e q u e s t . i p ) v a l t p D a t a : F u t u r e [ D a t a ] = u s e r F u t u r e . f l a t M a p ( u s e r = > t h i r d P a r t y D a t a ( u s e r . i d ) ) v a l i n c o m e I n f o : F u t u r e [ D o u b l e ] = g e o F u t u r e . f l a t M a p ( g e o = > a v e r a g e I n c o m e ( g e o ) ) f o r { u s e r < - u s e r F u t u r e d a t a < - t p D a t a a v g I n c o m e < - i n c o m e I n f o } y i e l d A u g m e n t e d U s e r ( u s e r , d a t a , a v g I n c o m e )

Slide 34

Slide 34 text

AKKA c l a s s M y A c t o r e x t e n d s A c t o r { d e f r e c e i v e = { c a s e v a l u e : S t r i n g = > p r i n t l n ( " r e c e i v e d " + v a l u e ) c a s e _ = > p r i n t l n ( " r e c e i v e d u n k n o w n m e s s a g e " ) } } s c a l a > v a l a c t o r = s y s t e m . a c t o r O f ( P r o p s ( n e w M y A c t o r ) ) a c t o r : a k k a . a c t o r . A c t o r R e f = A c t o r [ a k k a : / / d e f a u l t / u s e r / $ b # 1 1 3 7 2 1 1 9 8 4 ] s c a l a > a c t o r ! " h e l l o " r e c e i v e d h e l l o s c a l a > a c t o r ! 1 r e c e i v e d u n k n o w n m e s s a g e

Slide 35

Slide 35 text

AKKA c l a s s D o u b l e r e x t e n d s A c t o r { d e f r e c e i v e = { c a s e v : I n t = > s e n d e r ! ( v * 2 ) c a s e _ = > p r i n t l n ( " r e c e i v e d u n k n o w n m e s s a g e " ) } } s c a l a > v a l r e s = a c t o r ? 3 r e s : s c a l a . c o n c u r r e n t . F u t u r e [ A n y ] = S u c c e s s ( 6 )

Slide 36

Slide 36 text

AKKA: WHAT ELSE? The message-driven programming model promotes asynchronous interfaces; Supervision strategies enable fault tolerance; Location transparency promotes scalability; Persistency enables internal state recovery.

Slide 37

Slide 37 text

LARGE-SCALE DATA PROCESSING: APACHE SPARK R D D is another monad! v a l t e x t F i l e = s c . t e x t F i l e ( " h d f s : / / . . . " ) v a l c o u n t s = t e x t F i l e . f l a t M a p ( l i n e = > l i n e . s p l i t ( " " ) ) . m a p ( w o r d = > ( w o r d , 1 ) ) . r e d u c e B y K e y ( _ + _ ) c o u n t s . s a v e A s T e x t F i l e ( " h d f s : / / . . . " )

Slide 38

Slide 38 text

OTHER SCALA PROS Power to create DSLs; Macros; Higher kinded types.

Slide 39

Slide 39 text

SCALA CONS: LEARNING CURVE

Slide 40

Slide 40 text

QUICK TO START USING, HARD TO MASTER When coming from an OO-background, it's easy to write OO code in Scala.

Slide 41

Slide 41 text

FUNCTIONAL IN THE SMALL, OO IN THE LARGE Pure functions, referential transparency and immutability are applied in small, isolated areas.

Slide 42

Slide 42 text

MORE FUNCTIONAL ABSTRACTIONS ; ; . Scalaz Shapeless Cats

Slide 43

Slide 43 text

OO OR FUNCTIONAL DESIGN? Do I design it using typeclasses and ad hoc polymorphism or using subtyping and parametric polymorphism?

Slide 44

Slide 44 text

SCALA CONS: COMPILATION TIMES

Slide 45

Slide 45 text

STARTUP OVERHEAD Scalac has lots of classes which have to be loaded and jit- compiled. The long startup time is mitigated by using incremental compilation.

Slide 46

Slide 46 text

COMPILATION SPEED Type inference; Implicit resolution; Functional idioms generate many more classes per given file size than Java.

Slide 47

Slide 47 text

COMPILATION SPEED

Slide 48

Slide 48 text

COMPILATION SPEED

Slide 49

Slide 49 text

COMPILATION SPEED

Slide 50

Slide 50 text

SCALA CONS: BUILD SYSTEM

Slide 51

Slide 51 text

SBT IS WIDELY USED Simple (?) build tool: a type-safe programmable build configuration.

Slide 52

Slide 52 text

SLIGHTLY OVERENGINEERED AND CONVOLUTED A build definition consists of one or more S e t t i n g s; A S e t t i n g describes a transformation of the build description; S e t t i n g s are scoped: project, configuration and task axis; A T a s k is a computation of values or side effects; T a s k s are also assigned to keys and can depend on settings and other tasks; T a s k K e y [ T ] returns S e t t i n g [ T a s k [ T ] ] .

Slide 53

Slide 53 text

DEPENDENCY RESOLUTION IS SLOW The dependency resolution (ivy) is single threaded, and not cached by default; There are alternatives: coursier, a pure Scala dependency resolver, is around 5 times faster resolving dependencies in a multi-project (28 projects) build (5 vs 25 minutes).

Slide 54

Slide 54 text

SCALA CONS: IDE AND TOOLING

Slide 55

Slide 55 text

IDES IntelliJ IDEA; Scala IDE (for Eclipse); ENSIME (for Emacs, Atom, Vim and Sublime).

Slide 56

Slide 56 text

RAPIDLY EVOLVING ECOSYSTEM IDE plugins are not as sophisticated (particularly when compared with Java), so developers might get frustrated. Work on the Scala presentation compiler (used by Scala IDE and ENSIME) and other tools makes us look with optimism to the future.

Slide 57

Slide 57 text

QUESTIONS?