Slide 1

Slide 1 text

Large scale stream processing with Apache Flink Nikolay Stoitsev Sr. Software Engineer at Uber Tech Sofia

Slide 2

Slide 2 text

Stream Processing?

Slide 3

Slide 3 text

Stream Processing? User Interaction Logs

Slide 4

Slide 4 text

Stream Processing? User Interaction Logs Application Logs

Slide 5

Slide 5 text

Stream Processing? User Interaction Logs Application Logs Sensor Data

Slide 6

Slide 6 text

Stream Processing? User Interaction Logs Application Logs Sensor Data Database Commit Logs

Slide 7

Slide 7 text

Infinite Dataset

Slide 8

Slide 8 text

Producer Stream

Slide 9

Slide 9 text

Producer Stream HDFS

Slide 10

Slide 10 text

Producer Stream HDFS Hive

Slide 11

Slide 11 text

Producer Stream HDFS Hive Big Latency

Slide 12

Slide 12 text

Producer Stream HDFS Real-time service

Slide 13

Slide 13 text

Apache Storm storm.apache.org

Slide 14

Slide 14 text

High-latency & accurate vs. Low-latency & approximation

Slide 15

Slide 15 text

Lambda architecture

Slide 16

Slide 16 text

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Slide 17

Slide 17 text

Kappa Architecture

Slide 18

Slide 18 text

Use Apache Kafka Durable, scalable, fault-tolerant

Slide 19

Slide 19 text

Producer Kafka Stream Processor

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

Metrics we want to track Net payout Daily items sold Weekly items sold Order acceptance rate Order preparation speed Item rating

Slide 23

Slide 23 text

Real time

Slide 24

Slide 24 text

Scalable

Slide 25

Slide 25 text

Granular

Slide 26

Slide 26 text

Highly available

Slide 27

Slide 27 text

Order Stream Payment Stream User Rating Stream

Slide 28

Slide 28 text

Order Stream Payment Stream User Rating Stream Stream Processor OLAP

Slide 29

Slide 29 text

samza.apache.org

Slide 30

Slide 30 text

Apache Flink flink.apache.org

Slide 31

Slide 31 text

Everything is a batch vs. Everything is a stream

Slide 32

Slide 32 text

Single JVM Cluster Cloud Runtime DataSet API DataStream API

Slide 33

Slide 33 text

Dataflow graph

Slide 34

Slide 34 text

Source Source Operator Operator Operator Sinc OLAP

Slide 35

Slide 35 text

https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

Slide 36

Slide 36 text

https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

Slide 37

Slide 37 text

https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

Slide 38

Slide 38 text

Flink Program Optimizer Graph Builder Client

Slide 39

Slide 39 text

Flink Program Optimizer Graph Builder Client Job Manager Task Manager Task Manager

Slide 40

Slide 40 text

Flink Program Optimizer Graph Builder Client Job Manager Task Manager Task Manager Snapshot Store

Slide 41

Slide 41 text

Fault tolerant

Slide 42

Slide 42 text

Flink Program Optimizer Graph Builder Client Job Manager Task Manager Task Manager Snapshot Store

Slide 43

Slide 43 text

Lightweight Asynchronous Snapshots for Distributed Dataflows Paris Carbone, Gyula Fóra, Stephan Ewen Seif Haridi Kostas Tzoumas

Slide 44

Slide 44 text

Barrier Msg Msg Barrier Msg Msg Barrier Operator

Slide 45

Slide 45 text

Barrier Msg Msg Barrier Msg Msg Operator Msg Snapshot Store

Slide 46

Slide 46 text

Exactly Once Processing

Slide 47

Slide 47 text

Can handle very large state

Slide 48

Slide 48 text

Flink Program Optimizer Graph Builder Client Job Manager Task Manager Task Manager Snapshot Store

Slide 49

Slide 49 text

Flink Program Optimizer Graph Builder Client Job Manager Task Manager Task Manager Snapshot Store Job Manager Job Manager Zookeeper

Slide 50

Slide 50 text

Flink Program Optimizer Graph Builder Client Job Manager Task Manager Task Manager Snapshot Store Job Manager Job Manager Zookeeper

Slide 51

Slide 51 text

Flink Program Optimizer Graph Builder Client Task Manager Task Manager Snapshot Store Job Manager Job Manager Zookeeper

Slide 52

Slide 52 text

Joining Streams

Slide 53

Slide 53 text

Order Stream User Rating Stream

Slide 54

Slide 54 text

Order Stream User Rating Stream

Slide 55

Slide 55 text

Order Stream User Rating Stream Local Join Local Join

Slide 56

Slide 56 text

Order Stream User Rating Stream Local Join Local Join

Slide 57

Slide 57 text

Apache Flink ● Can join streams ● Fault tolerant ● Exactly Once Processing ● Combines stream and batch processing

Slide 58

Slide 58 text

… but it requires Java/Scala code

Slide 59

Slide 59 text

Scalable, efficient and robust

Slide 60

Slide 60 text

github.com/uber/AthenaX

Slide 61

Slide 61 text

SQL → what data to analyze Flink → how to analyze it

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

No content

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

Resource estimation and auto scaling

Slide 70

Slide 70 text

Monitoring and automatic failure recovery

Slide 71

Slide 71 text

eng.uber.com/athenax

Slide 72

Slide 72 text

Thanks! Nikolay Stoitsev @ Uber

Slide 73

Slide 73 text

No content